The traditional use of Vachellia nilotica for sexually transmitted diseases is substantiated by the antiviral activity of its bark extract against sexually transmitted viruses

Vachellia (Acacia) nilotica and other plants of this genus have been used in traditional medicine of Asian and African countries to treat many disorders, including sexually transmitted diseases, but few studies were performed to validate their anti-microbial and anti-viral activity against sexually...

Full description

Saved in:
Bibliographic Details
Published inJournal of ethnopharmacology Vol. 213; pp. 403 - 408
Main Authors Donalisio, Manuela, Cagno, Valeria, Civra, Andrea, Gibellini, Davide, Musumeci, Giuseppina, Rittà, Massimo, Ghosh, Manik, Lembo, David
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Vachellia (Acacia) nilotica and other plants of this genus have been used in traditional medicine of Asian and African countries to treat many disorders, including sexually transmitted diseases, but few studies were performed to validate their anti-microbial and anti-viral activity against sexually transmitted infections. The present study was undertaken to explore whether the ethnomedical use of V.nilotica to treat genital lesions is substantiated by its antiviral activity against the human immunodeficiency virus (HIV), the herpes simplex virus (HSV) and the human papillomavirus (HPV). The antiviral activity of V.nilotica was tested in vitro by virus-specific inhibition assays using HSV-2 strains, sensible or resistant to acyclovir, HIV-1IIIb strain and HPV-16 pseudovirion (PsV). The potential mode of action of extract against HSV-2 and HPV-16 was further investigated by virus inactivation and time-of-addition assays on cell cultures. V.nilotica chloroform, methanolic and water bark extracts exerted antiviral activity against HSV-2 and HPV-16 PsV infections; among these, methanolic extract showed the best EC50s with values of 4.71 and 1.80µg/ml against HSV-2 and HPV-16, respectively, and it was also active against an acyclovir-resistant HSV-2 strain with an EC50 of 6.71µg/ml. By contrast, no suppression of HIV infection was observed. Investigation of the mechanism of action revealed that the methanolic extract directly inactivated the infectivity of the HPV-16 particles, whereas a partial virus inactivation and interference with virus attachment (EC50 of 2.74µg/ml) were both found to contribute to the anti-HSV-2 activity. These results support the traditional use of V.nilotica applied externally for the treatment of genital lesions. Further work remains to be done in order to identify the bioactive components. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0378-8741
1872-7573
DOI:10.1016/j.jep.2017.11.039