Positive and negative corona discharges in flowing carbon dioxide

The effect of the gas flow rate (10-320 cm3 min-1) on the process of ozone formation in both positive and negative corona discharges has been studied using a coaxial cylindrical system of electrodes fed by dry CO2. The source of ozone is electron impact dissociation of carbon dioxide to liberate oxy...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. D, Applied physics Vol. 41; no. 17; pp. 175211 - 175211 (7)
Main Authors Skalny, J D, Stoica, A, Orszagh, J, Vladoiu, R, Mason, N J
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 07.09.2008
Institute of Physics
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The effect of the gas flow rate (10-320 cm3 min-1) on the process of ozone formation in both positive and negative corona discharges has been studied using a coaxial cylindrical system of electrodes fed by dry CO2. The source of ozone is electron impact dissociation of carbon dioxide to liberate oxygen atoms and their subsequent formation of oxygen molecules, which may then form ozone by the well-known Chapman mechanism. Small increases in flow rate were found to cause a major increase in the discharge current measured in the negative corona discharge. This effect was found to correspond to observed changes in the ozone concentration within the discharge and is a consequence of dissociative electron attachment to ozone leading to negative ion formation in the discharge. In contrast no direct effect of ozone on the positive corona discharge current was observed. The observed increase in average positive ion mobility in the positive corona is ascribed to the conversion of ions into more mobile ions. Considerably higher ozone concentrations (up to 100 ppm) were found in the negative corona discharge. The effect of the geometry of the system was also explored by using three different stainless steel outer electrodes with diameters of 10, 15 and 27 mm. Ozone concentrations were found to decrease significantly with increasing radius of the outer electrode at the same average input energy density.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0022-3727
1361-6463
DOI:10.1088/0022-3727/41/17/175211