The effect of grain boundaries and adsorbates on the electrical properties of hydrogenated ultra nano crystalline diamond

The results of a comprehensive study on the temperature dependence of the electrical properties of hydrogenated and air exposed undoped UNCD layers following heating/cooling cycles are presented. The results clearly show that, in contrast to hydrogenated and air exposed single crystal type IIa diamo...

Full description

Saved in:
Bibliographic Details
Published inDiamond and related materials Vol. 18; no. 9; pp. 1118 - 1122
Main Authors Gan, L., Bolker, A., Saguy, C., Kalish, R., Tan, D.L., Tay, B.K., Gruen, D., Bruno, P.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.09.2009
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The results of a comprehensive study on the temperature dependence of the electrical properties of hydrogenated and air exposed undoped UNCD layers following heating/cooling cycles are presented. The results clearly show that, in contrast to hydrogenated and air exposed single crystal type IIa diamond, which exhibits a clear highly conductive p-type surface layer, the electrical properties of hydrogen and H 2O exposure of UNCD are determined by the properties of the entire layer. The changes in the electrical conductivity of UNCD as a result of heating are governed by two different processes: (i) Loss of water from the external surface that takes place at about 150 °C. This process is reversible, reviving the electrical properties upon exposure to humidity, just like in single crystalline diamond.(ii) Modification of the inter-grain material, which occurs at higher temperatures possibly due to H diffusion and passivation of some dangling bonds in the inter-grain material. This increases the resistivity in an irreversible manner. The conduction mechanism in the inter-grain material is characterized by variable range hopping in band tails thus indirectly proving that the material between the grains is some kind of amorphous carbon.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0925-9635
1879-0062
DOI:10.1016/j.diamond.2009.02.023