On Loss Mechanisms of Complex Switched Capacitor Converters
In this paper the power losses of efficient capacitive converters with multitude transfer ratio values are discussed. The loss mechanism circuits, based on general transposed series parallel (GTSP) topology, is studied and the losses are calculated, which in turn enables the "bottlenecks"...
Saved in:
Published in | IEEE transactions on circuits and systems. I, Regular papers Vol. 62; no. 11; pp. 2771 - 2780 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper the power losses of efficient capacitive converters with multitude transfer ratio values are discussed. The loss mechanism circuits, based on general transposed series parallel (GTSP) topology, is studied and the losses are calculated, which in turn enables the "bottlenecks" to be identified and overcome. The calculations show that for a given number of switching cells the power losses of such converters are mainly dependent on the voltage conversion ratio, the topology function, the resistances of the switches in on and off states, the ESR of the capacitors, the switching frequency, the voltage drop, and the load. The theory explains the fact that was observed in experiments, that for low voltage conversion ratio values, efficiency decrease was measured. It is shown that for these low voltage ratio values the mechanism associated to the off resistance of the switches is more dominant and reduces the efficiency. This power loss estimation can be used as a powerful tool for the performance optimization of capacitive converters. The theoretical results are verified experimentally on a 10-cell GTSP converter prototype. The experimental results show good agreement with the proposed theory. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1549-8328 1558-0806 |
DOI: | 10.1109/TCSI.2015.2479056 |