Recent progress in cathode materials research for advanced lithium ion batteries
New and improved materials for energy storage are urgently required to make more efficient use of our finite supply of fossil fuels, and to enable the effective use of renewable energy sources. Lithium ion batteries (LIB) are a key resource for mobile energy, and one of the most promising solutions...
Saved in:
Published in | Materials science & engineering. R, Reports : a review journal Vol. 73; no. 5-6; pp. 51 - 65 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.05.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | New and improved materials for energy storage are urgently required to make more efficient use of our finite supply of fossil fuels, and to enable the effective use of renewable energy sources. Lithium ion batteries (LIB) are a key resource for mobile energy, and one of the most promising solutions for environment-friendly transportation such as plug-in hybrid electric vehicles (PHEVs). Among the three key components (cathode, anode and electrolyte) of LIB, cathode material is usually the most expensive one with highest weight in the battery, which justifies the intense research focus on this electrode. In this review, we present an overview of the breakthroughs in the past decade in developing high energy high power cathode materials for lithium ion batteries. Materials from six structural groups (layered oxides, spinel oxides, olivine compounds, silicate compounds, tavorite compounds, and borate compounds) are covered. We focus on their electrochemical performances and the related fundamental crystal structures, solid-state physics and chemistry are covered. The effect of modifications on both chemistry and morphology are discussed as well. |
---|---|
ISSN: | 0927-796X 1879-212X |
DOI: | 10.1016/j.mser.2012.05.003 |