Keratinocytes Share Gene Expression Fingerprint with Epidermal Langerhans Cells via mRNA Transfer
The immune functions of epithelia-resident dendritic cells are influenced by epithelial-derived cytokines. Here we identified a communication form between tissue-resident dendritic cells and niche cells that allows direct intracellular material exchange between the parties. We show that many keratin...
Saved in:
Published in | Journal of investigative dermatology Vol. 139; no. 11; pp. 2313 - 2323.e8 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The immune functions of epithelia-resident dendritic cells are influenced by epithelial-derived cytokines. Here we identified a communication form between tissue-resident dendritic cells and niche cells that allows direct intracellular material exchange between the parties. We show that many keratinocyte (KC)-specific molecules such as keratins and adhesion molecules could be detected in the epidermal-resident Langerhans cells (LCs) as mRNA and protein. Furthermore, KC-derived Cre led to genetic recombination in the LCs. We also found that LCs containing KC-derived material were more prone to migration. The KC-specific signatures were transferred from KCs to LCs through an exosome-independent mechanism that likely involved nanotubes/dendrites. The transfer of material between epithelial cells and epithelia-associated dendritic cells was not limited to mice or to KC-to-LC transfer. Taken together, these data suggest that the epithelial environment might have a long-term effect on dendritic cell biology and that genetic tools that specifically target epithelial cells also affect tissue-resident immune cells. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-202X 1523-1747 |
DOI: | 10.1016/j.jid.2019.05.006 |