Enantioselective oxidation of secondary alcohols by the flavoprotein alcohol oxidase from Phanerochaete chrysosporium

The enantioselective oxidation of secondary alcohols represents a valuable approach for the synthesis of optically pure compounds. Flavoprotein oxidases can catalyse such selective transformations by merely using oxygen as electron acceptor. While many flavoprotein oxidases preferably act on primary...

Full description

Saved in:
Bibliographic Details
Published inArchives of biochemistry and biophysics Vol. 704; p. 108888
Main Authors Tjallinks, Gwen, Martin, Caterina, Fraaije, Marco W.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The enantioselective oxidation of secondary alcohols represents a valuable approach for the synthesis of optically pure compounds. Flavoprotein oxidases can catalyse such selective transformations by merely using oxygen as electron acceptor. While many flavoprotein oxidases preferably act on primary alcohols, the FAD-containing alcohol oxidase from Phanerochaete chrysosporium was found to be able to perform kinetic resolutions of several secondary alcohols. By selective oxidation of the (S)-alcohols, the (R)-alcohols were obtained in high enantiopurity. In silico docking studies were carried out in order to substantiate the observed (S)-selectivity. Several hydrophobic and aromatic residues in the substrate binding site create a cavity in which the substrates can comfortably undergo van der Waals and pi-stacking interactions. Consequently, oxidation of the secondary alcohols is restricted to one of the two enantiomers. This study has uncovered the ability of an FAD-containing alcohol oxidase, that is known for oxidizing small primary alcohols, to perform enantioselective oxidations of various secondary alcohols.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-9861
1096-0384
DOI:10.1016/j.abb.2021.108888