A Highly Selective Fluorescent Probe for the Detection of Nitroreductase Based on a Naphthalimide Scaffold

The development of fluorescent probes for nitroreductase (NTR) has received intense attention because of its biological significance and wide application. In this work, a novel fluorescent probe for the detection of NTR in aqueous solution was designed and synthesized on a 1,8-naphthalimide scaffold...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluorescence Vol. 32; no. 5; pp. 1825 - 1832
Main Authors Li, Han, Jintao, Feng, Wang, Zhen, Jia, Yan, Li, Peng, Yao, Cuixia, Qu, Zongjin
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The development of fluorescent probes for nitroreductase (NTR) has received intense attention because of its biological significance and wide application. In this work, a novel fluorescent probe for the detection of NTR in aqueous solution was designed and synthesized on a 1,8-naphthalimide scaffold. In the presence of NTR and nicotinamide adenine dinucleotide (NADH) under physiological conditions, the probe was converted into a 4-hydroxy-1,8-naphthalimide derivative and exhibited a sharp fluorescence enhancement at 550 nm, with a high selectivity for NTR over various analytes. The detection limit for NTR was determined to be 9.8 ng/ml by this probe. Due to its low signal background, this probe showed > 70-fold fluorescence enhancement. Theoretical calculations revealed that the reason for the fluorescence quenching of this probe is the photoinduced electron transfer (PET) from both the nitrobenzene and morpholine groups to the naphthalimide fluorophore.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1053-0509
1573-4994
DOI:10.1007/s10895-022-02974-7