cDNA cloning of halocidin and a new antimicrobial peptide derived from the N-terminus of Ci-META4

Halocidin is an antimicrobial peptide, which is isolated from hemocytes from the tunicate, Halocynthia aurantium. In this study, we cloned the full-length cDNA of halocidin from pharyngeal tissue, using a combination of RT-PCR and 5′-RACE-PCR. The observed cDNA structure indicated that halocidin is...

Full description

Saved in:
Bibliographic Details
Published inPeptides (New York, N.Y. : 1980) Vol. 26; no. 12; pp. 2360 - 2367
Main Authors Jang, Woong Sik, Kim, Chong Han, Kang, Min Sook, Chae, Hee Jeong, Son, Seok Min, Seo, Sook Jae, Lee, In Hee
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 01.12.2005
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Halocidin is an antimicrobial peptide, which is isolated from hemocytes from the tunicate, Halocynthia aurantium. In this study, we cloned the full-length cDNA of halocidin from pharyngeal tissue, using a combination of RT-PCR and 5′-RACE-PCR. The observed cDNA structure indicated that halocidin is synthesized as a 10.37 kDa prepropeptide. Based on the cDNA structure and the known amino acid sequence of the mature peptide, it was concluded that the precursor of halocidin contains a 21-residue signal peptide, followed by the 18 residues of the mature peptide, and a 56-residue anionic C-terminal extension, which is removed later on in the process. The signal sequence of halocidin exhibited a high degree of similarity with the corresponding portion of the Ci-META4 protein, which had been previously discovered in the coelomic cells of another tunicate, Ciona intestinalis, and is considered to play a role in metamorphosis. However, in several respects, the cDNA structure of Ci-META4 suggested that it might constitute a precursor for an antimicrobial peptide. Thus, we prepared a synthetic peptide, which was comprised of 19 N-terminal amino acid residues in the predicted mature region of Ci-META4, and tested it with regard to its antimicrobial activity. As a result, we confirmed that the synthetic peptide exhibited potent antimicrobial activity against Gram (+) and (−) bacteria, while evidencing no hemolytic activity toward human erythrocytes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0196-9781
1873-5169
DOI:10.1016/j.peptides.2005.05.004