Effect of long-term low concentrations of TiO2 nanoparticles on dewaterability of activated sludge and the relevant mechanism: the role of nanoparticle aging

Nanoparticles can undergo aging phenomena in sewage treatment systems, which alter their physical and chemical properties. However, the effect of aged nanoparticles on the dewatering performance of activated sludge under long-term low concentrations is yet to be reported in sewage treatment systems....

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 29; no. 8; pp. 12188 - 12197
Main Authors Jiang, Chengyu, Chen, Qingjin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nanoparticles can undergo aging phenomena in sewage treatment systems, which alter their physical and chemical properties. However, the effect of aged nanoparticles on the dewatering performance of activated sludge under long-term low concentrations is yet to be reported in sewage treatment systems. Here, we compared the chronic effects of pristine and aged TiO 2 nanoparticles on the sludge dewatering index, which includes specific resistance to filtration (SRF) and bound water (BW) in a sequencing batch reactor (SBR) at μg/L concentration levels, and analyzed the relevant mechanisms. The results indicated that aging in the sludge supernatant altered the photosensitivity and water stability of nanoparticles, which was mainly due to the changes in the zeta potential and energy band of the particle and was ultimately attributed to the combined effect of particle surface inclusions such as organic matter and inorganic salt. At 10 μg/L, nanoparticles reduced the sludge dewaterability, which observed an improvement at 100 μg/L. This is because 10 μg/L promoted the secretion of extracellular polymeric substances (EPS), which regulated the structure of sludge flora and increased the abundance of secreted quorum sensing-acyl-homoserine lactones (QS-AHL) and EPS genera, while the corresponding exposure results for 100 μg/L were the opposite, owing to the damage and necrosis effects caused by exposure under long-term light, which reduced EPS production and increased sludge density. Interestingly, aging could alleviate the effects of two exposure concentrations on sludge dewatering, mainly because of the decrease in the photoactivity of the nanoparticles. The results of this study show that environmental aging could delay, but not reverse the results of exposure to specific concentrations of nanoparticles. However, the significantly different ecological effects of photosensitive nanoparticles with two environmentally relevant concentration should be refined and confirmed again in freshwater environments to provide a basis for subsequent scientific management and control of photosensitive nanoparticles.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-021-16451-4