Realization of hybrid compressive imaging strategies

The tendency of natural scenes to cluster around low frequencies is not only useful in image compression, it also can prove advantageous in novel infrared and hyperspectral image acquisition. In this paper, we exploit this signal model with two approaches to enhance the quality of compressive imagin...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Optical Society of America. A, Optics, image science, and vision Vol. 31; no. 8; p. 1716
Main Authors Li, Yun, Sankaranarayanan, Aswin C, Xu, Lina, Baraniuk, Richard, Kelly, Kevin F
Format Journal Article
LanguageEnglish
Published United States 01.08.2014
Online AccessGet more information

Cover

Loading…
More Information
Summary:The tendency of natural scenes to cluster around low frequencies is not only useful in image compression, it also can prove advantageous in novel infrared and hyperspectral image acquisition. In this paper, we exploit this signal model with two approaches to enhance the quality of compressive imaging as implemented in a single-pixel compressive camera and compare these results against purely random acquisition. We combine projection patterns that can efficiently extract the model-based information with subsequent random projections to form the hybrid pattern sets. With the first approach, we generate low-frequency patterns via a direct transform. As an alternative, we also used principal component analysis of an image library to identify the low-frequency components. We present the first (to the best of our knowledge) experimental validation of this hybrid signal model on real data. For both methods, we acquire comparable quality of reconstructions while acquiring only half the number of measurements needed by traditional random sequences. The optimal combination of hybrid patterns and the effects of noise on image reconstruction are also discussed.
ISSN:1520-8532
DOI:10.1364/josaa.31.001716