InP and Sn:InP based quantum dot sensitized solar cells
Due to the ideal band gap and environmental friendliness, InP is a promising light-harvesting material in photovoltaic cells. However, “green” InP based quantum dot sensitized solar cells (QDSSCs) have been rarely reported. Herein, nearly monodispersed Sn doped InP (Sn:InP) quantum dots (QDs) were s...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 3; no. 43; pp. 21922 - 21929 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to the ideal band gap and environmental friendliness, InP is a promising light-harvesting material in photovoltaic cells. However, “green” InP based quantum dot sensitized solar cells (QDSSCs) have been rarely reported. Herein, nearly monodispersed Sn doped InP (Sn:InP) quantum dots (QDs) were synthesized by the one-pot nucleation doping method, and used as the sensitizer in the construction of QDSSCs. High QD loadings on the TiO
2
film electrodes were achieved by using the capping ligand-induced self-assembly (CLIS) sensitization technique. The resulting champion Sn:InP cell shows a power conversion efficiency (PCE) of 3.54% under AM 1.5G (simulated 1 sun illumination), which is remarkably higher than that of un-doped InP QD based ones. This improvement is ascribed to the regulation role of the band gap by Sn dopant in the InP QDs. The Sn:InP QDSSCs exhibit moderate efficiency, good reproducibility and stability. These new findings may pave the way for the performance improvements of other QD photovoltaic devices. |
---|---|
AbstractList | Due to the ideal band gap and environmental friendliness, InP is a promising light-harvesting material in photovoltaic cells. However, “green” InP based quantum dot sensitized solar cells (QDSSCs) have been rarely reported. Herein, nearly monodispersed Sn doped InP (Sn:InP) quantum dots (QDs) were synthesized by the one-pot nucleation doping method, and used as the sensitizer in the construction of QDSSCs. High QD loadings on the TiO
2
film electrodes were achieved by using the capping ligand-induced self-assembly (CLIS) sensitization technique. The resulting champion Sn:InP cell shows a power conversion efficiency (PCE) of 3.54% under AM 1.5G (simulated 1 sun illumination), which is remarkably higher than that of un-doped InP QD based ones. This improvement is ascribed to the regulation role of the band gap by Sn dopant in the InP QDs. The Sn:InP QDSSCs exhibit moderate efficiency, good reproducibility and stability. These new findings may pave the way for the performance improvements of other QD photovoltaic devices. Due to the ideal band gap and environmental friendliness, InP is a promising light-harvesting material in photovoltaic cells. However, “green” InP based quantum dot sensitized solar cells (QDSSCs) have been rarely reported. Herein, nearly monodispersed Sn doped InP (Sn:InP) quantum dots (QDs) were synthesized by the one-pot nucleation doping method, and used as the sensitizer in the construction of QDSSCs. High QD loadings on the TiO₂ film electrodes were achieved by using the capping ligand-induced self-assembly (CLIS) sensitization technique. The resulting champion Sn:InP cell shows a power conversion efficiency (PCE) of 3.54% under AM 1.5G (simulated 1 sun illumination), which is remarkably higher than that of un-doped InP QD based ones. This improvement is ascribed to the regulation role of the band gap by Sn dopant in the InP QDs. The Sn:InP QDSSCs exhibit moderate efficiency, good reproducibility and stability. These new findings may pave the way for the performance improvements of other QD photovoltaic devices. Due to the ideal band gap and environmental friendliness, InP is a promising light-harvesting material in photovoltaic cells. However, "green" InP based quantum dot sensitized solar cells (QDSSCs) have been rarely reported. Herein, nearly monodispersed Sn doped InP (Sn:InP) quantum dots (QDs) were synthesized by the one-pot nucleation doping method, and used as the sensitizer in the construction of QDSSCs. High QD loadings on the TiO2 film electrodes were achieved by using the capping ligand-induced self-assembly (CLIS) sensitization technique. The resulting champion Sn:InP cell shows a power conversion efficiency (PCE) of 3.54% under AM 1.5G (simulated 1 sun illumination), which is remarkably higher than that of un-doped InP QD based ones. This improvement is ascribed to the regulation role of the band gap by Sn dopant in the InP QDs. The Sn:InP QDSSCs exhibit moderate efficiency, good reproducibility and stability. These new findings may pave the way for the performance improvements of other QD photovoltaic devices. |
Author | Lai, Xinchun Qu, Liangti Yang, Suolong Zhao, Xiaochong Zhao, Pengxiang |
Author_xml | – sequence: 1 givenname: Suolong surname: Yang fullname: Yang, Suolong organization: Department of Chemistry, Beijing Institute of Technology, Beijing 100081, China, Science and Technology on Surface Physics and Chemistry Laboratory – sequence: 2 givenname: Pengxiang surname: Zhao fullname: Zhao, Pengxiang organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907, China – sequence: 3 givenname: Xiaochong surname: Zhao fullname: Zhao, Xiaochong organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907, China – sequence: 4 givenname: Liangti surname: Qu fullname: Qu, Liangti organization: Department of Chemistry, Beijing Institute of Technology, Beijing 100081, China – sequence: 5 givenname: Xinchun surname: Lai fullname: Lai, Xinchun organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907, China |
BookMark | eNqNkN1LwzAUxYNMcM69-Bf0UYRqmjRfvo3ix2Cg4HwuWXoLkS7ZkvRB_3pbJgoi6H25h8PvHi7nFE2cd4DQeYGvCkzVdcXWC1wqwqojNCWY4VyUik--tJQnaB7jKx5GYsyVmiKxdE-Zdk327G5GudERmmzfa5f6bdb4lEVw0Sb7PtjRdzpkBrounqHjVncR5p97hl7ubtfVQ756vF9Wi1VuqOIpF8CEEcCZlBvaaskNbUAJEFwSzmULgCkD0pTGSNJKqYuGiZbw0VUgGZ2hi0PuLvh9DzHVWxvHD7QD38eaUCKUooKWf6KFpIwTTKn6BzqkEka4GNDLA2qCjzFAW--C3erwVhe4Hmuvv2sfYPwDNjbpZL1LQdvut5MP0KWDVw |
CitedBy_id | crossref_primary_10_1002_aenm_202003457 crossref_primary_10_1016_j_jpowsour_2017_04_040 crossref_primary_10_1088_2053_1591_ab23ad crossref_primary_10_1016_j_jallcom_2021_160480 crossref_primary_10_1002_adom_202300425 crossref_primary_10_1016_j_ccr_2024_216376 crossref_primary_10_1039_D2NA00734G crossref_primary_10_1002_cphc_202400800 crossref_primary_10_1021_acsami_1c25009 crossref_primary_10_1039_C7SE00137A crossref_primary_10_1016_j_ijleo_2017_11_098 crossref_primary_10_1016_j_solener_2019_02_019 crossref_primary_10_1016_j_nanoen_2021_106854 crossref_primary_10_1039_C8CS00431E crossref_primary_10_1134_S1990519X18020050 crossref_primary_10_1016_j_rser_2017_01_172 crossref_primary_10_1039_C6NR04713K crossref_primary_10_1039_C9NR01192G crossref_primary_10_1039_C9TA10557C crossref_primary_10_1016_j_mssp_2019_02_022 crossref_primary_10_1021_acsaem_8b01453 crossref_primary_10_1039_C6RA22858E crossref_primary_10_1016_j_jallcom_2019_02_108 crossref_primary_10_1038_s41427_021_00300_4 crossref_primary_10_1038_s41598_020_79644_w crossref_primary_10_1039_C9DT03163D crossref_primary_10_1039_D3CC02605A crossref_primary_10_3390_ijms24032699 crossref_primary_10_1007_s10853_018_03203_y crossref_primary_10_1016_j_jpcs_2018_12_015 crossref_primary_10_1155_2022_1382580 crossref_primary_10_1021_acs_energyfuels_1c00539 crossref_primary_10_1039_C8TC06476H crossref_primary_10_1002_adom_202402051 crossref_primary_10_1007_s12274_021_4038_z crossref_primary_10_1016_j_jpowsour_2022_231732 crossref_primary_10_1016_j_physb_2023_414634 crossref_primary_10_1021_acsami_0c05476 crossref_primary_10_1038_s41578_023_00596_4 crossref_primary_10_1039_D0SC01039A crossref_primary_10_1016_j_cej_2024_153947 crossref_primary_10_1016_j_jpowsour_2024_234902 crossref_primary_10_1016_j_solener_2022_01_030 |
Cites_doi | 10.1021/am402547e 10.1021/la9713863 10.1021/jp4118369 10.1021/cm5040886 10.1039/c2dt12464e 10.1021/ja4079804 10.1021/ja504310w 10.1016/j.jallcom.2013.08.003 10.1039/c2cc36526j 10.1016/j.rser.2014.05.023 10.1186/1556-276X-7-93 10.1021/cm050110a 10.1021/acs.jpclett.5b00001 10.1021/jp510339z 10.1021/jp3058838 10.1021/nn300278z 10.1016/j.colsurfb.2013.05.038 10.1039/c1cp20290a 10.1088/0957-4484/23/27/275103 10.1016/j.elecom.2009.04.037 10.1039/C5RA02922H 10.1021/jacs.5b01946 10.1246/cl.2007.88 10.1039/c1cc11317h 10.1021/jp808091d 10.1088/0957-4484/23/48/485609 10.1016/j.matlet.2012.12.102 10.7498/aps.64.038806 10.1021/ja9063102 10.1021/am500026a 10.1016/j.spmi.2013.01.001 10.1039/C4TA02291B 10.1021/nn400656n 10.1039/C4TA05134C 10.1063/1.2812666 10.1016/j.cplett.2013.08.109 10.1039/C5TA00068H 10.1063/1.2356795 10.1021/nn203598c 10.3762/bjnano.5.135 10.1098/rsfs.2012.0103 10.1063/1.2903059 10.1088/1674-1056/24/4/047205 10.1021/tx5000975 10.1021/ja903558r 10.1039/C1EE02253A 10.1021/ja307124m 10.1021/nn506638n 10.1016/j.electacta.2012.09.087 10.1016/j.electacta.2013.01.004 10.1016/j.jallcom.2014.05.116 10.1021/cm802254u 10.1039/C4TC01863J 10.1021/ar900134d 10.1021/jz400181m |
ContentType | Journal Article |
DBID | AAYXX CITATION 7ST C1K SOI 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
DOI | 10.1039/C5TA04925C |
DatabaseName | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Materials Research Database Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 2050-7496 |
EndPage | 21929 |
ExternalDocumentID | 10_1039_C5TA04925C |
GroupedDBID | 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3G J3H J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH 7ST C1K SOI 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c396t-7e57c7e6588b3fa86c3de97e7682668fee035e2d4cc82f88a1d57f26035e9e853 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Thu Jul 10 22:47:54 EDT 2025 Fri Jul 11 06:13:54 EDT 2025 Fri Jul 11 00:01:42 EDT 2025 Tue Jul 01 04:17:59 EDT 2025 Thu Apr 24 23:08:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c396t-7e57c7e6588b3fa86c3de97e7682668fee035e2d4cc82f88a1d57f26035e9e853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1827925267 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2327993734 proquest_miscellaneous_1835620339 proquest_miscellaneous_1827925267 crossref_primary_10_1039_C5TA04925C crossref_citationtrail_10_1039_C5TA04925C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2015 |
References | Soenen (C5TA04925C-(cit35)/*[position()=1]) 2014; 27 Lacroix (C5TA04925C-(cit34)/*[position()=1]) 2013; 3 Gao (C5TA04925C-(cit11)/*[position()=1]) 2014; 612 Pan (C5TA04925C-(cit56)/*[position()=1]) 2012; 6 Lim (C5TA04925C-(cit27)/*[position()=1]) 2012; 23 Zaban (C5TA04925C-(cit37)/*[position()=1]) 1998; 14 Ehrler (C5TA04925C-(cit38)/*[position()=1]) 2013; 7 Zhao (C5TA04925C-(cit53)/*[position()=1]) 2014; 118 Joung (C5TA04925C-(cit26)/*[position()=1]) 2012; 7 Guijarro (C5TA04925C-(cit51)/*[position()=1]) 2011; 13 Pan (C5TA04925C-(cit24)/*[position()=1]) 2014; 136 Lee (C5TA04925C-(cit14)/*[position()=1]) 2008; 20 Cai (C5TA04925C-(cit45)/*[position()=1]) 2007; 102 Guijarro (C5TA04925C-(cit50)/*[position()=1]) 2009; 113 Wang (C5TA04925C-(cit55)/*[position()=1]) 2013; 135 Jara (C5TA04925C-(cit18)/*[position()=1]) 2014; 26 Santra (C5TA04925C-(cit21)/*[position()=1]) 2013; 4 Kumar (C5TA04925C-(cit13)/*[position()=1]) 2015; 3 Mordvinova (C5TA04925C-(cit32)/*[position()=1]) 2014; 5 Mora-Sero (C5TA04925C-(cit4)/*[position()=1]) 2009; 42 Shi (C5TA04925C-(cit42)/*[position()=1]) 2015; 5 Lucey (C5TA04925C-(cit46)/*[position()=1]) 2005; 17 Kouhnavard (C5TA04925C-(cit6)/*[position()=1]) 2014; 37 Mali (C5TA04925C-(cit8)/*[position()=1]) 2012; 41 Jiao (C5TA04925C-(cit12)/*[position()=1]) 2015; 9 Zhang (C5TA04925C-(cit23)/*[position()=1]) 2012; 48 Balis (C5TA04925C-(cit40)/*[position()=1]) 2013; 91 Du (C5TA04925C-(cit48)/*[position()=1]) 2014; 2 Li (C5TA04925C-(cit22)/*[position()=1]) 2015; 3 Virieux (C5TA04925C-(cit28)/*[position()=1]) 2012; 134 Li (C5TA04925C-(cit7)/*[position()=1]) 2014; 2014 Mordvinova (C5TA04925C-(cit33)/*[position()=1]) 2014; 582 Zhao (C5TA04925C-(cit25)/*[position()=1]) 2015; 137 Yang (C5TA04925C-(cit5)/*[position()=1]) 2011; 47 Mahmoud (C5TA04925C-(cit30)/*[position()=1]) 2013; 56 Badawi (C5TA04925C-(cit39)/*[position()=1]) 2015; 24 Fan (C5TA04925C-(cit10)/*[position()=1]) 2009; 11 Mushonga (C5TA04925C-(cit31)/*[position()=1]) 2013; 95 Seo (C5TA04925C-(cit41)/*[position()=1]) 2013; 87 Liu (C5TA04925C-(cit29)/*[position()=1]) 2013; 111 Xie (C5TA04925C-(cit49)/*[position()=1]) 2009; 131 Chang (C5TA04925C-(cit17)/*[position()=1]) 2013; 5 Li (C5TA04925C-(cit3)/*[position()=1]) 2015; 64 Zhang (C5TA04925C-(cit36)/*[position()=1]) 2012; 23 Li (C5TA04925C-(cit2)/*[position()=1]) 2015; 6 Tamang (C5TA04925C-(cit47)/*[position()=1]) 2011; 5 Tachibana (C5TA04925C-(cit52)/*[position()=1]) 2007; 36 Xie (C5TA04925C-(cit44)/*[position()=1]) 2009; 131 Zhang (C5TA04925C-(cit54)/*[position()=1]) 2015; 3 Li (C5TA04925C-(cit19)/*[position()=1]) 2012; 5 Ahmed (C5TA04925C-(cit9)/*[position()=1]) 2015; 119 Hanna (C5TA04925C-(cit1)/*[position()=1]) 2006; 100 Shen (C5TA04925C-(cit43)/*[position()=1]) 2008; 103 Tian (C5TA04925C-(cit15)/*[position()=1]) 2012; 116 Yun (C5TA04925C-(cit16)/*[position()=1]) 2014; 6 Peng (C5TA04925C-(cit20)/*[position()=1]) 2013; 586 |
References_xml | – volume: 5 start-page: 8740 year: 2013 ident: C5TA04925C-(cit17)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am402547e – volume: 14 start-page: 3153 year: 1998 ident: C5TA04925C-(cit37)/*[position()=1] publication-title: Langmuir doi: 10.1021/la9713863 – volume: 118 start-page: 5683 year: 2014 ident: C5TA04925C-(cit53)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp4118369 – volume: 2014 start-page: 569763 year: 2014 ident: C5TA04925C-(cit7)/*[position()=1] publication-title: Int. J. Photoenergy – volume: 26 start-page: 7221 year: 2014 ident: C5TA04925C-(cit18)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm5040886 – volume: 41 start-page: 6130 year: 2012 ident: C5TA04925C-(cit8)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/c2dt12464e – volume: 135 start-page: 15913 year: 2013 ident: C5TA04925C-(cit55)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4079804 – volume: 136 start-page: 9203 year: 2014 ident: C5TA04925C-(cit24)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja504310w – volume: 582 start-page: 43 year: 2014 ident: C5TA04925C-(cit33)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2013.08.003 – volume: 48 start-page: 11235 year: 2012 ident: C5TA04925C-(cit23)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c2cc36526j – volume: 37 start-page: 397 year: 2014 ident: C5TA04925C-(cit6)/*[position()=1] publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2014.05.023 – volume: 7 start-page: 93 year: 2012 ident: C5TA04925C-(cit26)/*[position()=1] publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-7-93 – volume: 17 start-page: 3754 year: 2005 ident: C5TA04925C-(cit46)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm050110a – volume: 6 start-page: 796 year: 2015 ident: C5TA04925C-(cit2)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00001 – volume: 119 start-page: 2297 year: 2015 ident: C5TA04925C-(cit9)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp510339z – volume: 116 start-page: 18655 year: 2012 ident: C5TA04925C-(cit15)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp3058838 – volume: 6 start-page: 3982 year: 2012 ident: C5TA04925C-(cit56)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn300278z – volume: 111 start-page: 162 year: 2013 ident: C5TA04925C-(cit29)/*[position()=1] publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2013.05.038 – volume: 13 start-page: 12024 year: 2011 ident: C5TA04925C-(cit51)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp20290a – volume: 23 start-page: 275103 year: 2012 ident: C5TA04925C-(cit36)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/23/27/275103 – volume: 11 start-page: 1337 year: 2009 ident: C5TA04925C-(cit10)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2009.04.037 – volume: 5 start-page: 32110 year: 2015 ident: C5TA04925C-(cit42)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA02922H – volume: 137 start-page: 5602 year: 2015 ident: C5TA04925C-(cit25)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b01946 – volume: 36 start-page: 88 year: 2007 ident: C5TA04925C-(cit52)/*[position()=1] publication-title: Chem. Lett. doi: 10.1246/cl.2007.88 – volume: 47 start-page: 9561 year: 2011 ident: C5TA04925C-(cit5)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c1cc11317h – volume: 113 start-page: 4208 year: 2009 ident: C5TA04925C-(cit50)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp808091d – volume: 23 start-page: 485609 year: 2012 ident: C5TA04925C-(cit27)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/23/48/485609 – volume: 95 start-page: 37 year: 2013 ident: C5TA04925C-(cit31)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/j.matlet.2012.12.102 – volume: 64 start-page: 038806 year: 2015 ident: C5TA04925C-(cit3)/*[position()=1] publication-title: Acta Phys. Sin-Ch. Ed. doi: 10.7498/aps.64.038806 – volume: 131 start-page: 15457 year: 2009 ident: C5TA04925C-(cit49)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9063102 – volume: 6 start-page: 3721 year: 2014 ident: C5TA04925C-(cit16)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am500026a – volume: 56 start-page: 86 year: 2013 ident: C5TA04925C-(cit30)/*[position()=1] publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2013.01.001 – volume: 2 start-page: 13033 year: 2014 ident: C5TA04925C-(cit48)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA02291B – volume: 7 start-page: 4210 year: 2013 ident: C5TA04925C-(cit38)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn400656n – volume: 3 start-page: 1649 year: 2015 ident: C5TA04925C-(cit22)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05134C – volume: 102 start-page: 103518 year: 2007 ident: C5TA04925C-(cit45)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.2812666 – volume: 586 start-page: 85 year: 2013 ident: C5TA04925C-(cit20)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2013.08.109 – volume: 3 start-page: 6557 year: 2015 ident: C5TA04925C-(cit54)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00068H – volume: 100 start-page: 074510 year: 2006 ident: C5TA04925C-(cit1)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.2356795 – volume: 5 start-page: 9392 year: 2011 ident: C5TA04925C-(cit47)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn203598c – volume: 5 start-page: 1220 year: 2014 ident: C5TA04925C-(cit32)/*[position()=1] publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.5.135 – volume: 3 start-page: 20120103 year: 2013 ident: C5TA04925C-(cit34)/*[position()=1] publication-title: Interface Focus doi: 10.1098/rsfs.2012.0103 – volume: 103 start-page: 084304 year: 2008 ident: C5TA04925C-(cit43)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.2903059 – volume: 24 start-page: 047205 year: 2015 ident: C5TA04925C-(cit39)/*[position()=1] publication-title: Chinese Phys. B doi: 10.1088/1674-1056/24/4/047205 – volume: 27 start-page: 1050 year: 2014 ident: C5TA04925C-(cit35)/*[position()=1] publication-title: Chem. Res. Toxicol. doi: 10.1021/tx5000975 – volume: 131 start-page: 10645 year: 2009 ident: C5TA04925C-(cit44)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja903558r – volume: 5 start-page: 5315 year: 2012 ident: C5TA04925C-(cit19)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C1EE02253A – volume: 134 start-page: 19701 year: 2012 ident: C5TA04925C-(cit28)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja307124m – volume: 9 start-page: 908 year: 2015 ident: C5TA04925C-(cit12)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn506638n – volume: 87 start-page: 213 year: 2013 ident: C5TA04925C-(cit41)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.09.087 – volume: 91 start-page: 246 year: 2013 ident: C5TA04925C-(cit40)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.01.004 – volume: 612 start-page: 323 year: 2014 ident: C5TA04925C-(cit11)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.05.116 – volume: 20 start-page: 6903 year: 2008 ident: C5TA04925C-(cit14)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm802254u – volume: 3 start-page: 1957 year: 2015 ident: C5TA04925C-(cit13)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C4TC01863J – volume: 42 start-page: 1848 year: 2009 ident: C5TA04925C-(cit4)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar900134d – volume: 4 start-page: 722 year: 2013 ident: C5TA04925C-(cit21)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz400181m |
SSID | ssj0000800699 |
Score | 2.3324575 |
Snippet | Due to the ideal band gap and environmental friendliness, InP is a promising light-harvesting material in photovoltaic cells. However, “green” InP based... Due to the ideal band gap and environmental friendliness, InP is a promising light-harvesting material in photovoltaic cells. However, "green" InP based... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 21922 |
SubjectTerms | chemistry Electrodes Illumination Indium phosphides lighting Photovoltaic cells Quantum dots Self assembly Solar cells tin Titanium dioxide |
Title | InP and Sn:InP based quantum dot sensitized solar cells |
URI | https://www.proquest.com/docview/1827925267 https://www.proquest.com/docview/1835620339 https://www.proquest.com/docview/2327993734 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfK9gIPiL9isKEgeEFVhhvbcby3qhraECAQnVSeIsdxpkqQIppIaJ9jH5i7OE5S1qHBS5TY1yjxXe9-d7k7E_IqmuRGxlKGlGc85JHWodKZCnVuJtRQXliNjuKHj_HJGX-3EIvR6HKQtVRX2aG52FpX8j9chTHgK1bJ_gNnu5vCAJwDf-EIHIbjjXh8Wn5yqZeYnoEXaJNyLJQES_J9DA7neI0J6tXywmJ4HDNOMVK_vgaSAnp1jz02fh-4w_HUlfT4maZFuCsYbGLuvgALc2y78PxXH4WuQbe2ttFFp1cuKbg8_wVyeWVisdQr0Mf9xOfaBQ6AtloOIxQTMYhQNIosooJiz1KnZ-1wzO1m6zUxGwgcZ5tq1VUvtzYar9VWA0AZ9k-difmUYtvFWW_m_Kf9P6xfl5PYfI1nKu1_e4vsRuB8gPbcnR7PT993sTtE2XGzNWn3ar7zLVNv-htsYp1NU9_gl_k9crflcjB1UnSfjGz5gNwZtKN8SCSIUABMDb6UR3jaSFPQSlMA0hT00hQ00hQ00vSInL09ns9OwnZjjdAwFVehtEIaaQF8JhkrdBIbllslLbiegNeSwlrKhI1ybkwSFUmiJ7mQBXi-MKosALzHZKdclfYJCRIjI8tlrmEWoE2sOC1skecKgKYQRuyR134JUtN2ncfNT76lV9d7j7zsaH-4XitbqV74lUzhn4DvqUu7qtcpuMoSKKJY_o2GAeKnjKnracDJkAjbGX96oyd6Rm73Yr9PdqqftT0AqFplz1vJ-Q0wcZIx |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=InP+and+Sn%3AInP+based+quantum+dot+sensitized+solar+cells&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Yang%2C+Suolong&rft.au=Zhao%2C+Pengxiang&rft.au=Zhao%2C+Xiaochong&rft.au=Qu%2C+Liangti&rft.date=2015-01-01&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=3&rft.issue=43&rft.spage=21922&rft.epage=21929&rft_id=info:doi/10.1039%2FC5TA04925C&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C5TA04925C |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |