InP and Sn:InP based quantum dot sensitized solar cells

Due to the ideal band gap and environmental friendliness, InP is a promising light-harvesting material in photovoltaic cells. However, “green” InP based quantum dot sensitized solar cells (QDSSCs) have been rarely reported. Herein, nearly monodispersed Sn doped InP (Sn:InP) quantum dots (QDs) were s...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 3; no. 43; pp. 21922 - 21929
Main Authors Yang, Suolong, Zhao, Pengxiang, Zhao, Xiaochong, Qu, Liangti, Lai, Xinchun
Format Journal Article
LanguageEnglish
Published 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the ideal band gap and environmental friendliness, InP is a promising light-harvesting material in photovoltaic cells. However, “green” InP based quantum dot sensitized solar cells (QDSSCs) have been rarely reported. Herein, nearly monodispersed Sn doped InP (Sn:InP) quantum dots (QDs) were synthesized by the one-pot nucleation doping method, and used as the sensitizer in the construction of QDSSCs. High QD loadings on the TiO 2 film electrodes were achieved by using the capping ligand-induced self-assembly (CLIS) sensitization technique. The resulting champion Sn:InP cell shows a power conversion efficiency (PCE) of 3.54% under AM 1.5G (simulated 1 sun illumination), which is remarkably higher than that of un-doped InP QD based ones. This improvement is ascribed to the regulation role of the band gap by Sn dopant in the InP QDs. The Sn:InP QDSSCs exhibit moderate efficiency, good reproducibility and stability. These new findings may pave the way for the performance improvements of other QD photovoltaic devices.
AbstractList Due to the ideal band gap and environmental friendliness, InP is a promising light-harvesting material in photovoltaic cells. However, “green” InP based quantum dot sensitized solar cells (QDSSCs) have been rarely reported. Herein, nearly monodispersed Sn doped InP (Sn:InP) quantum dots (QDs) were synthesized by the one-pot nucleation doping method, and used as the sensitizer in the construction of QDSSCs. High QD loadings on the TiO 2 film electrodes were achieved by using the capping ligand-induced self-assembly (CLIS) sensitization technique. The resulting champion Sn:InP cell shows a power conversion efficiency (PCE) of 3.54% under AM 1.5G (simulated 1 sun illumination), which is remarkably higher than that of un-doped InP QD based ones. This improvement is ascribed to the regulation role of the band gap by Sn dopant in the InP QDs. The Sn:InP QDSSCs exhibit moderate efficiency, good reproducibility and stability. These new findings may pave the way for the performance improvements of other QD photovoltaic devices.
Due to the ideal band gap and environmental friendliness, InP is a promising light-harvesting material in photovoltaic cells. However, “green” InP based quantum dot sensitized solar cells (QDSSCs) have been rarely reported. Herein, nearly monodispersed Sn doped InP (Sn:InP) quantum dots (QDs) were synthesized by the one-pot nucleation doping method, and used as the sensitizer in the construction of QDSSCs. High QD loadings on the TiO₂ film electrodes were achieved by using the capping ligand-induced self-assembly (CLIS) sensitization technique. The resulting champion Sn:InP cell shows a power conversion efficiency (PCE) of 3.54% under AM 1.5G (simulated 1 sun illumination), which is remarkably higher than that of un-doped InP QD based ones. This improvement is ascribed to the regulation role of the band gap by Sn dopant in the InP QDs. The Sn:InP QDSSCs exhibit moderate efficiency, good reproducibility and stability. These new findings may pave the way for the performance improvements of other QD photovoltaic devices.
Due to the ideal band gap and environmental friendliness, InP is a promising light-harvesting material in photovoltaic cells. However, "green" InP based quantum dot sensitized solar cells (QDSSCs) have been rarely reported. Herein, nearly monodispersed Sn doped InP (Sn:InP) quantum dots (QDs) were synthesized by the one-pot nucleation doping method, and used as the sensitizer in the construction of QDSSCs. High QD loadings on the TiO2 film electrodes were achieved by using the capping ligand-induced self-assembly (CLIS) sensitization technique. The resulting champion Sn:InP cell shows a power conversion efficiency (PCE) of 3.54% under AM 1.5G (simulated 1 sun illumination), which is remarkably higher than that of un-doped InP QD based ones. This improvement is ascribed to the regulation role of the band gap by Sn dopant in the InP QDs. The Sn:InP QDSSCs exhibit moderate efficiency, good reproducibility and stability. These new findings may pave the way for the performance improvements of other QD photovoltaic devices.
Author Lai, Xinchun
Qu, Liangti
Yang, Suolong
Zhao, Xiaochong
Zhao, Pengxiang
Author_xml – sequence: 1
  givenname: Suolong
  surname: Yang
  fullname: Yang, Suolong
  organization: Department of Chemistry, Beijing Institute of Technology, Beijing 100081, China, Science and Technology on Surface Physics and Chemistry Laboratory
– sequence: 2
  givenname: Pengxiang
  surname: Zhao
  fullname: Zhao, Pengxiang
  organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907, China
– sequence: 3
  givenname: Xiaochong
  surname: Zhao
  fullname: Zhao, Xiaochong
  organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907, China
– sequence: 4
  givenname: Liangti
  surname: Qu
  fullname: Qu, Liangti
  organization: Department of Chemistry, Beijing Institute of Technology, Beijing 100081, China
– sequence: 5
  givenname: Xinchun
  surname: Lai
  fullname: Lai, Xinchun
  organization: Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907, China
BookMark eNqNkN1LwzAUxYNMcM69-Bf0UYRqmjRfvo3ix2Cg4HwuWXoLkS7ZkvRB_3pbJgoi6H25h8PvHi7nFE2cd4DQeYGvCkzVdcXWC1wqwqojNCWY4VyUik--tJQnaB7jKx5GYsyVmiKxdE-Zdk327G5GudERmmzfa5f6bdb4lEVw0Sb7PtjRdzpkBrounqHjVncR5p97hl7ubtfVQ756vF9Wi1VuqOIpF8CEEcCZlBvaaskNbUAJEFwSzmULgCkD0pTGSNJKqYuGiZbw0VUgGZ2hi0PuLvh9DzHVWxvHD7QD38eaUCKUooKWf6KFpIwTTKn6BzqkEka4GNDLA2qCjzFAW--C3erwVhe4Hmuvv2sfYPwDNjbpZL1LQdvut5MP0KWDVw
CitedBy_id crossref_primary_10_1002_aenm_202003457
crossref_primary_10_1016_j_jpowsour_2017_04_040
crossref_primary_10_1088_2053_1591_ab23ad
crossref_primary_10_1016_j_jallcom_2021_160480
crossref_primary_10_1002_adom_202300425
crossref_primary_10_1016_j_ccr_2024_216376
crossref_primary_10_1039_D2NA00734G
crossref_primary_10_1002_cphc_202400800
crossref_primary_10_1021_acsami_1c25009
crossref_primary_10_1039_C7SE00137A
crossref_primary_10_1016_j_ijleo_2017_11_098
crossref_primary_10_1016_j_solener_2019_02_019
crossref_primary_10_1016_j_nanoen_2021_106854
crossref_primary_10_1039_C8CS00431E
crossref_primary_10_1134_S1990519X18020050
crossref_primary_10_1016_j_rser_2017_01_172
crossref_primary_10_1039_C6NR04713K
crossref_primary_10_1039_C9NR01192G
crossref_primary_10_1039_C9TA10557C
crossref_primary_10_1016_j_mssp_2019_02_022
crossref_primary_10_1021_acsaem_8b01453
crossref_primary_10_1039_C6RA22858E
crossref_primary_10_1016_j_jallcom_2019_02_108
crossref_primary_10_1038_s41427_021_00300_4
crossref_primary_10_1038_s41598_020_79644_w
crossref_primary_10_1039_C9DT03163D
crossref_primary_10_1039_D3CC02605A
crossref_primary_10_3390_ijms24032699
crossref_primary_10_1007_s10853_018_03203_y
crossref_primary_10_1016_j_jpcs_2018_12_015
crossref_primary_10_1155_2022_1382580
crossref_primary_10_1021_acs_energyfuels_1c00539
crossref_primary_10_1039_C8TC06476H
crossref_primary_10_1002_adom_202402051
crossref_primary_10_1007_s12274_021_4038_z
crossref_primary_10_1016_j_jpowsour_2022_231732
crossref_primary_10_1016_j_physb_2023_414634
crossref_primary_10_1021_acsami_0c05476
crossref_primary_10_1038_s41578_023_00596_4
crossref_primary_10_1039_D0SC01039A
crossref_primary_10_1016_j_cej_2024_153947
crossref_primary_10_1016_j_jpowsour_2024_234902
crossref_primary_10_1016_j_solener_2022_01_030
Cites_doi 10.1021/am402547e
10.1021/la9713863
10.1021/jp4118369
10.1021/cm5040886
10.1039/c2dt12464e
10.1021/ja4079804
10.1021/ja504310w
10.1016/j.jallcom.2013.08.003
10.1039/c2cc36526j
10.1016/j.rser.2014.05.023
10.1186/1556-276X-7-93
10.1021/cm050110a
10.1021/acs.jpclett.5b00001
10.1021/jp510339z
10.1021/jp3058838
10.1021/nn300278z
10.1016/j.colsurfb.2013.05.038
10.1039/c1cp20290a
10.1088/0957-4484/23/27/275103
10.1016/j.elecom.2009.04.037
10.1039/C5RA02922H
10.1021/jacs.5b01946
10.1246/cl.2007.88
10.1039/c1cc11317h
10.1021/jp808091d
10.1088/0957-4484/23/48/485609
10.1016/j.matlet.2012.12.102
10.7498/aps.64.038806
10.1021/ja9063102
10.1021/am500026a
10.1016/j.spmi.2013.01.001
10.1039/C4TA02291B
10.1021/nn400656n
10.1039/C4TA05134C
10.1063/1.2812666
10.1016/j.cplett.2013.08.109
10.1039/C5TA00068H
10.1063/1.2356795
10.1021/nn203598c
10.3762/bjnano.5.135
10.1098/rsfs.2012.0103
10.1063/1.2903059
10.1088/1674-1056/24/4/047205
10.1021/tx5000975
10.1021/ja903558r
10.1039/C1EE02253A
10.1021/ja307124m
10.1021/nn506638n
10.1016/j.electacta.2012.09.087
10.1016/j.electacta.2013.01.004
10.1016/j.jallcom.2014.05.116
10.1021/cm802254u
10.1039/C4TC01863J
10.1021/ar900134d
10.1021/jz400181m
ContentType Journal Article
DBID AAYXX
CITATION
7ST
C1K
SOI
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
DOI 10.1039/C5TA04925C
DatabaseName CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA
Materials Research Database
Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 2050-7496
EndPage 21929
ExternalDocumentID 10_1039_C5TA04925C
GroupedDBID 0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3G
J3H
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
7ST
C1K
SOI
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c396t-7e57c7e6588b3fa86c3de97e7682668fee035e2d4cc82f88a1d57f26035e9e853
ISSN 2050-7488
2050-7496
IngestDate Thu Jul 10 22:47:54 EDT 2025
Fri Jul 11 06:13:54 EDT 2025
Fri Jul 11 00:01:42 EDT 2025
Tue Jul 01 04:17:59 EDT 2025
Thu Apr 24 23:08:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c396t-7e57c7e6588b3fa86c3de97e7682668fee035e2d4cc82f88a1d57f26035e9e853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1827925267
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_2327993734
proquest_miscellaneous_1835620339
proquest_miscellaneous_1827925267
crossref_primary_10_1039_C5TA04925C
crossref_citationtrail_10_1039_C5TA04925C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2015
References Soenen (C5TA04925C-(cit35)/*[position()=1]) 2014; 27
Lacroix (C5TA04925C-(cit34)/*[position()=1]) 2013; 3
Gao (C5TA04925C-(cit11)/*[position()=1]) 2014; 612
Pan (C5TA04925C-(cit56)/*[position()=1]) 2012; 6
Lim (C5TA04925C-(cit27)/*[position()=1]) 2012; 23
Zaban (C5TA04925C-(cit37)/*[position()=1]) 1998; 14
Ehrler (C5TA04925C-(cit38)/*[position()=1]) 2013; 7
Zhao (C5TA04925C-(cit53)/*[position()=1]) 2014; 118
Joung (C5TA04925C-(cit26)/*[position()=1]) 2012; 7
Guijarro (C5TA04925C-(cit51)/*[position()=1]) 2011; 13
Pan (C5TA04925C-(cit24)/*[position()=1]) 2014; 136
Lee (C5TA04925C-(cit14)/*[position()=1]) 2008; 20
Cai (C5TA04925C-(cit45)/*[position()=1]) 2007; 102
Guijarro (C5TA04925C-(cit50)/*[position()=1]) 2009; 113
Wang (C5TA04925C-(cit55)/*[position()=1]) 2013; 135
Jara (C5TA04925C-(cit18)/*[position()=1]) 2014; 26
Santra (C5TA04925C-(cit21)/*[position()=1]) 2013; 4
Kumar (C5TA04925C-(cit13)/*[position()=1]) 2015; 3
Mordvinova (C5TA04925C-(cit32)/*[position()=1]) 2014; 5
Mora-Sero (C5TA04925C-(cit4)/*[position()=1]) 2009; 42
Shi (C5TA04925C-(cit42)/*[position()=1]) 2015; 5
Lucey (C5TA04925C-(cit46)/*[position()=1]) 2005; 17
Kouhnavard (C5TA04925C-(cit6)/*[position()=1]) 2014; 37
Mali (C5TA04925C-(cit8)/*[position()=1]) 2012; 41
Jiao (C5TA04925C-(cit12)/*[position()=1]) 2015; 9
Zhang (C5TA04925C-(cit23)/*[position()=1]) 2012; 48
Balis (C5TA04925C-(cit40)/*[position()=1]) 2013; 91
Du (C5TA04925C-(cit48)/*[position()=1]) 2014; 2
Li (C5TA04925C-(cit22)/*[position()=1]) 2015; 3
Virieux (C5TA04925C-(cit28)/*[position()=1]) 2012; 134
Li (C5TA04925C-(cit7)/*[position()=1]) 2014; 2014
Mordvinova (C5TA04925C-(cit33)/*[position()=1]) 2014; 582
Zhao (C5TA04925C-(cit25)/*[position()=1]) 2015; 137
Yang (C5TA04925C-(cit5)/*[position()=1]) 2011; 47
Mahmoud (C5TA04925C-(cit30)/*[position()=1]) 2013; 56
Badawi (C5TA04925C-(cit39)/*[position()=1]) 2015; 24
Fan (C5TA04925C-(cit10)/*[position()=1]) 2009; 11
Mushonga (C5TA04925C-(cit31)/*[position()=1]) 2013; 95
Seo (C5TA04925C-(cit41)/*[position()=1]) 2013; 87
Liu (C5TA04925C-(cit29)/*[position()=1]) 2013; 111
Xie (C5TA04925C-(cit49)/*[position()=1]) 2009; 131
Chang (C5TA04925C-(cit17)/*[position()=1]) 2013; 5
Li (C5TA04925C-(cit3)/*[position()=1]) 2015; 64
Zhang (C5TA04925C-(cit36)/*[position()=1]) 2012; 23
Li (C5TA04925C-(cit2)/*[position()=1]) 2015; 6
Tamang (C5TA04925C-(cit47)/*[position()=1]) 2011; 5
Tachibana (C5TA04925C-(cit52)/*[position()=1]) 2007; 36
Xie (C5TA04925C-(cit44)/*[position()=1]) 2009; 131
Zhang (C5TA04925C-(cit54)/*[position()=1]) 2015; 3
Li (C5TA04925C-(cit19)/*[position()=1]) 2012; 5
Ahmed (C5TA04925C-(cit9)/*[position()=1]) 2015; 119
Hanna (C5TA04925C-(cit1)/*[position()=1]) 2006; 100
Shen (C5TA04925C-(cit43)/*[position()=1]) 2008; 103
Tian (C5TA04925C-(cit15)/*[position()=1]) 2012; 116
Yun (C5TA04925C-(cit16)/*[position()=1]) 2014; 6
Peng (C5TA04925C-(cit20)/*[position()=1]) 2013; 586
References_xml – volume: 5
  start-page: 8740
  year: 2013
  ident: C5TA04925C-(cit17)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am402547e
– volume: 14
  start-page: 3153
  year: 1998
  ident: C5TA04925C-(cit37)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la9713863
– volume: 118
  start-page: 5683
  year: 2014
  ident: C5TA04925C-(cit53)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4118369
– volume: 2014
  start-page: 569763
  year: 2014
  ident: C5TA04925C-(cit7)/*[position()=1]
  publication-title: Int. J. Photoenergy
– volume: 26
  start-page: 7221
  year: 2014
  ident: C5TA04925C-(cit18)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm5040886
– volume: 41
  start-page: 6130
  year: 2012
  ident: C5TA04925C-(cit8)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/c2dt12464e
– volume: 135
  start-page: 15913
  year: 2013
  ident: C5TA04925C-(cit55)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4079804
– volume: 136
  start-page: 9203
  year: 2014
  ident: C5TA04925C-(cit24)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja504310w
– volume: 582
  start-page: 43
  year: 2014
  ident: C5TA04925C-(cit33)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2013.08.003
– volume: 48
  start-page: 11235
  year: 2012
  ident: C5TA04925C-(cit23)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc36526j
– volume: 37
  start-page: 397
  year: 2014
  ident: C5TA04925C-(cit6)/*[position()=1]
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2014.05.023
– volume: 7
  start-page: 93
  year: 2012
  ident: C5TA04925C-(cit26)/*[position()=1]
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-7-93
– volume: 17
  start-page: 3754
  year: 2005
  ident: C5TA04925C-(cit46)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm050110a
– volume: 6
  start-page: 796
  year: 2015
  ident: C5TA04925C-(cit2)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00001
– volume: 119
  start-page: 2297
  year: 2015
  ident: C5TA04925C-(cit9)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp510339z
– volume: 116
  start-page: 18655
  year: 2012
  ident: C5TA04925C-(cit15)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp3058838
– volume: 6
  start-page: 3982
  year: 2012
  ident: C5TA04925C-(cit56)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn300278z
– volume: 111
  start-page: 162
  year: 2013
  ident: C5TA04925C-(cit29)/*[position()=1]
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2013.05.038
– volume: 13
  start-page: 12024
  year: 2011
  ident: C5TA04925C-(cit51)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp20290a
– volume: 23
  start-page: 275103
  year: 2012
  ident: C5TA04925C-(cit36)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/27/275103
– volume: 11
  start-page: 1337
  year: 2009
  ident: C5TA04925C-(cit10)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2009.04.037
– volume: 5
  start-page: 32110
  year: 2015
  ident: C5TA04925C-(cit42)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA02922H
– volume: 137
  start-page: 5602
  year: 2015
  ident: C5TA04925C-(cit25)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b01946
– volume: 36
  start-page: 88
  year: 2007
  ident: C5TA04925C-(cit52)/*[position()=1]
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2007.88
– volume: 47
  start-page: 9561
  year: 2011
  ident: C5TA04925C-(cit5)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc11317h
– volume: 113
  start-page: 4208
  year: 2009
  ident: C5TA04925C-(cit50)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp808091d
– volume: 23
  start-page: 485609
  year: 2012
  ident: C5TA04925C-(cit27)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/48/485609
– volume: 95
  start-page: 37
  year: 2013
  ident: C5TA04925C-(cit31)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2012.12.102
– volume: 64
  start-page: 038806
  year: 2015
  ident: C5TA04925C-(cit3)/*[position()=1]
  publication-title: Acta Phys. Sin-Ch. Ed.
  doi: 10.7498/aps.64.038806
– volume: 131
  start-page: 15457
  year: 2009
  ident: C5TA04925C-(cit49)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9063102
– volume: 6
  start-page: 3721
  year: 2014
  ident: C5TA04925C-(cit16)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am500026a
– volume: 56
  start-page: 86
  year: 2013
  ident: C5TA04925C-(cit30)/*[position()=1]
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2013.01.001
– volume: 2
  start-page: 13033
  year: 2014
  ident: C5TA04925C-(cit48)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA02291B
– volume: 7
  start-page: 4210
  year: 2013
  ident: C5TA04925C-(cit38)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn400656n
– volume: 3
  start-page: 1649
  year: 2015
  ident: C5TA04925C-(cit22)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05134C
– volume: 102
  start-page: 103518
  year: 2007
  ident: C5TA04925C-(cit45)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2812666
– volume: 586
  start-page: 85
  year: 2013
  ident: C5TA04925C-(cit20)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2013.08.109
– volume: 3
  start-page: 6557
  year: 2015
  ident: C5TA04925C-(cit54)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00068H
– volume: 100
  start-page: 074510
  year: 2006
  ident: C5TA04925C-(cit1)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2356795
– volume: 5
  start-page: 9392
  year: 2011
  ident: C5TA04925C-(cit47)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn203598c
– volume: 5
  start-page: 1220
  year: 2014
  ident: C5TA04925C-(cit32)/*[position()=1]
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.5.135
– volume: 3
  start-page: 20120103
  year: 2013
  ident: C5TA04925C-(cit34)/*[position()=1]
  publication-title: Interface Focus
  doi: 10.1098/rsfs.2012.0103
– volume: 103
  start-page: 084304
  year: 2008
  ident: C5TA04925C-(cit43)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2903059
– volume: 24
  start-page: 047205
  year: 2015
  ident: C5TA04925C-(cit39)/*[position()=1]
  publication-title: Chinese Phys. B
  doi: 10.1088/1674-1056/24/4/047205
– volume: 27
  start-page: 1050
  year: 2014
  ident: C5TA04925C-(cit35)/*[position()=1]
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx5000975
– volume: 131
  start-page: 10645
  year: 2009
  ident: C5TA04925C-(cit44)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja903558r
– volume: 5
  start-page: 5315
  year: 2012
  ident: C5TA04925C-(cit19)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C1EE02253A
– volume: 134
  start-page: 19701
  year: 2012
  ident: C5TA04925C-(cit28)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja307124m
– volume: 9
  start-page: 908
  year: 2015
  ident: C5TA04925C-(cit12)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn506638n
– volume: 87
  start-page: 213
  year: 2013
  ident: C5TA04925C-(cit41)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.09.087
– volume: 91
  start-page: 246
  year: 2013
  ident: C5TA04925C-(cit40)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.01.004
– volume: 612
  start-page: 323
  year: 2014
  ident: C5TA04925C-(cit11)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.05.116
– volume: 20
  start-page: 6903
  year: 2008
  ident: C5TA04925C-(cit14)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm802254u
– volume: 3
  start-page: 1957
  year: 2015
  ident: C5TA04925C-(cit13)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC01863J
– volume: 42
  start-page: 1848
  year: 2009
  ident: C5TA04925C-(cit4)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar900134d
– volume: 4
  start-page: 722
  year: 2013
  ident: C5TA04925C-(cit21)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz400181m
SSID ssj0000800699
Score 2.3324575
Snippet Due to the ideal band gap and environmental friendliness, InP is a promising light-harvesting material in photovoltaic cells. However, “green” InP based...
Due to the ideal band gap and environmental friendliness, InP is a promising light-harvesting material in photovoltaic cells. However, "green" InP based...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 21922
SubjectTerms chemistry
Electrodes
Illumination
Indium phosphides
lighting
Photovoltaic cells
Quantum dots
Self assembly
Solar cells
tin
Titanium dioxide
Title InP and Sn:InP based quantum dot sensitized solar cells
URI https://www.proquest.com/docview/1827925267
https://www.proquest.com/docview/1835620339
https://www.proquest.com/docview/2327993734
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfK9gIPiL9isKEgeEFVhhvbcby3qhraECAQnVSeIsdxpkqQIppIaJ9jH5i7OE5S1qHBS5TY1yjxXe9-d7k7E_IqmuRGxlKGlGc85JHWodKZCnVuJtRQXliNjuKHj_HJGX-3EIvR6HKQtVRX2aG52FpX8j9chTHgK1bJ_gNnu5vCAJwDf-EIHIbjjXh8Wn5yqZeYnoEXaJNyLJQES_J9DA7neI0J6tXywmJ4HDNOMVK_vgaSAnp1jz02fh-4w_HUlfT4maZFuCsYbGLuvgALc2y78PxXH4WuQbe2ttFFp1cuKbg8_wVyeWVisdQr0Mf9xOfaBQ6AtloOIxQTMYhQNIosooJiz1KnZ-1wzO1m6zUxGwgcZ5tq1VUvtzYar9VWA0AZ9k-difmUYtvFWW_m_Kf9P6xfl5PYfI1nKu1_e4vsRuB8gPbcnR7PT993sTtE2XGzNWn3ar7zLVNv-htsYp1NU9_gl_k9crflcjB1UnSfjGz5gNwZtKN8SCSIUABMDb6UR3jaSFPQSlMA0hT00hQ00hQ00vSInL09ns9OwnZjjdAwFVehtEIaaQF8JhkrdBIbllslLbiegNeSwlrKhI1ybkwSFUmiJ7mQBXi-MKosALzHZKdclfYJCRIjI8tlrmEWoE2sOC1skecKgKYQRuyR134JUtN2ncfNT76lV9d7j7zsaH-4XitbqV74lUzhn4DvqUu7qtcpuMoSKKJY_o2GAeKnjKnracDJkAjbGX96oyd6Rm73Yr9PdqqftT0AqFplz1vJ-Q0wcZIx
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=InP+and+Sn%3AInP+based+quantum+dot+sensitized+solar+cells&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Yang%2C+Suolong&rft.au=Zhao%2C+Pengxiang&rft.au=Zhao%2C+Xiaochong&rft.au=Qu%2C+Liangti&rft.date=2015-01-01&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=3&rft.issue=43&rft.spage=21922&rft.epage=21929&rft_id=info:doi/10.1039%2FC5TA04925C&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C5TA04925C
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon