Coarse quantization for data compression in coherent location systems
When emitter location systems measure time-difference-of-arrival (TDOA) and differential Doppler (DD) by coherently cross-correlating the signal pairs, data compression techniques are needed to facilitate data transfer of one of the signals to the receiving site of the other signal. Two block-adapti...
Saved in:
Published in | IEEE transactions on aerospace and electronic systems Vol. 36; no. 4; pp. 1269 - 1278 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2000
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | When emitter location systems measure time-difference-of-arrival (TDOA) and differential Doppler (DD) by coherently cross-correlating the signal pairs, data compression techniques are needed to facilitate data transfer of one of the signals to the receiving site of the other signal. Two block-adaptive quantization schemes are analyzed here to determine their impact on the signal-to-noise ratio (SNR) of the quantized signal as well as on the post-correlation SNR. Comparisons are made between two approaches: quantization of the real/imaginary (R/I) components or the magnitude/phase (M/P) components. For the M/P approach, a rule is derived for optimally allocating the bits between the magnitude and phase. The M/P approach provides better post-quantization/precorrelation SNR for most signals; however, when the SNR of the signal not being quantized is small, the post-correlation SNR can be largely unaffected by the quantization. In that case, there is little difference between R/I and M/P, even under the most favorable scenario for M/P. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9251 1557-9603 |
DOI: | 10.1109/7.892674 |