Comparison of Cascade, Lattice, and Parallel Filter Architectures

We examine the use of different high-level filter architectures (cascade, lattice, and parallel). We discuss their advantages and disadvantages, and we present simulation results and filter-tolerance tests. This information serves as a useful comparative analysis in the selection of a high-level fil...

Full description

Saved in:
Bibliographic Details
Published inJournal of lightwave technology Vol. 28; no. 23; pp. 3463 - 3469
Main Authors Patnaik, Rohit, Vandrasi, Vivek, Madsen, Christi K, Eftekhar, Ali A, Adibi, Ali
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We examine the use of different high-level filter architectures (cascade, lattice, and parallel). We discuss their advantages and disadvantages, and we present simulation results and filter-tolerance tests. This information serves as a useful comparative analysis in the selection of a high-level filter architecture for a particular problem. The sensitivity to nonlinearity is also evaluated as resonance-enhanced power in the feedback path. For narrowband band-pass responses, cascade architectures appear to be more tolerant to filter parameter variations than lattice architectures and are substantially more efficient than parallel architectures.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2010.2089972