Intrinsic Image Decomposition for Feature Extraction of Hyperspectral Images

In this paper, a novel feature extraction method based on intrinsic image decomposition (IID) is proposed for hyperspectral image classification. The proposed method consists of the following steps. First, the spectral dimension of the hyperspectral image is reduced with averaging-based image fusion...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 53; no. 4; pp. 2241 - 2253
Main Authors Xudong Kang, Shutao Li, Leyuan Fang, Benediktsson, Jon Atli
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, a novel feature extraction method based on intrinsic image decomposition (IID) is proposed for hyperspectral image classification. The proposed method consists of the following steps. First, the spectral dimension of the hyperspectral image is reduced with averaging-based image fusion. Then, the dimension reduced image is partitioned into several subsets of adjacent bands. Next, the reflectance and shading components of each subset are estimated with an optimization-based IID technique. Finally, pixel-wise classification is performed only on the reflectance components, which reflect the material-dependent properties of different objects. Experimental results show that, with the proposed feature extraction method, the support vector machine classifier is able to obtain much higher classification accuracy even when the number of training samples is quite small. This demonstrates that IID is indeed an effective way for feature extraction of hyperspectral images.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2014.2358615