Radiation damage effects in candidate titanates for Pu disposition: Pyrochlore
Laboratory experiments on titanate ceramics were performed to verify whether certain assumptions are valid regarding the swelling, chemical durability, and microcracking that might occur as 239Pu decays. Titanate ceramics are the material of choice for the immobilization of surplus weapons-grade Pu....
Saved in:
Published in | Journal of nuclear materials Vol. 345; no. 2-3; pp. 109 - 135 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.10.2005
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Laboratory experiments on titanate ceramics were performed to verify whether certain assumptions are valid regarding the swelling, chemical durability, and microcracking that might occur as 239Pu decays. Titanate ceramics are the material of choice for the immobilization of surplus weapons-grade Pu. The short-lived isotope 238Pu, was incorporated into the ceramic formulation to accelerate the effects of radiation-induced damage. We report on the effects of this damage on the density (volumetric swelling <6%), crystal structure of pyrochlore-bearing specimens (amorphous after about 2×1018α/g), and dissolution (no change from the fully crystalline specimen). Even though the specimens became amorphous during the tests, there was no evidence for microcracking in the photomicrographs from the scanning electron microscope. Thus, although pyrochlore is susceptible to radiation-induced damage, the material remains chemically and physically viable as a material for immobilizing surplus weapons-grade Pu. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0022-3115 1873-4820 |
DOI: | 10.1016/j.jnucmat.2005.04.064 |