Novel irreversible covalent BTK inhibitors discovered using DNA-encoded chemistry
[Display omitted] Libraries of DNA-Encoded small molecules created using combinatorial chemistry and synthetic oligonucleotides are being applied to drug discovery projects across the pharmaceutical industry. The majority of reported projects describe the discovery of reversible, i.e. non-covalent,...
Saved in:
Published in | Bioorganic & medicinal chemistry Vol. 42; p. 116223 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | [Display omitted]
Libraries of DNA-Encoded small molecules created using combinatorial chemistry and synthetic oligonucleotides are being applied to drug discovery projects across the pharmaceutical industry. The majority of reported projects describe the discovery of reversible, i.e. non-covalent, target modulators. We synthesized multiple DNA-encoded chemical libraries terminated in electrophiles and then used them to discover covalent irreversible inhibitors and report the successful discovery of acrylamide- and epoxide-terminated Bruton’s Tyrosine Kinase (BTK) inhibitors. We also demonstrate their selectivity, potency and covalent cysteine engagement using a range of techniques including X-ray crystallography, thermal transition shift assay, reporter displacement assay and intact protein complex mass spectrometry. The epoxide BTK inhibitors described here are the first ever reported to utilize this electrophile for this target. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0968-0896 1464-3391 |
DOI: | 10.1016/j.bmc.2021.116223 |