Limestone-Mediated Suppression of Fusarium Wilt in Spinach Seed Crops

Fusarium wilt of spinach is caused by the soilborne fungus Fusarium oxysporum f. sp. spinaciae and occurs in most regions of spinach production. The disease is favored by acid soils and warm temperatures, and the fungus can survive extended periods as chlamydospores or by asymptomatic colonization o...

Full description

Saved in:
Bibliographic Details
Published inPlant disease Vol. 101; no. 1; p. 81
Main Authors Gatch, Emily W, du Toit, Lindsey J
Format Journal Article
LanguageEnglish
Published United States 01.01.2017
Online AccessGet more information

Cover

Loading…
More Information
Summary:Fusarium wilt of spinach is caused by the soilborne fungus Fusarium oxysporum f. sp. spinaciae and occurs in most regions of spinach production. The disease is favored by acid soils and warm temperatures, and the fungus can survive extended periods as chlamydospores or by asymptomatic colonization of the roots of nonhost plant species. The 10- to 15-year rotation required to minimize losses to Fusarium wilt is the primary constraint on spinach seed production in the maritime Pacific Northwest, the only region of the United States suitable for this cool-season, daylength-sensitive crop. Raising soil pH with agricultural limestone (97% CaCO ) results in a transitory, partially suppressive effect on spinach Fusarium wilt. A field trial was completed from 2009 to 2012 to assess the potential for annual applications of agricultural limestone at 0, 2.24, and 4.48 tons/ha for 3 years prior to a spinach seed crop to improve Fusarium wilt suppression compared with the level of suppression attained from a single limestone amendment at 4.48 tons/ha. Three proprietary female spinach lines were planted that ranged from highly susceptible to partially resistant to Fusarium wilt. Three successive annual applications of limestone at 4.48 tons/ha reduced midseason wilt incidence by an average of 20%, increased spinach biomass by 33%, and increased marketable spinach seed yield by 45% compared with plots amended once with the same rate of limestone in the spring of planting. The suppressive effect increased with increasing rate of limestone amendment, with the greatest difference observed when limestone was applied at between 0 and 2.24 tons/ha annually for 3 years. The effects on seed yield were greatest for the partially resistant female line, followed by the moderately susceptible and highly susceptible female lines. Overall, the results demonstrate that annual applications of agricultural limestone on acid soils of the maritime Pacific Northwest of the United States can enhance suppression of spinach Fusarium wilt, potentially reducing the required rotation interval by as much as 50%, thereby doubling the capacity for spinach seed production in the United States.
ISSN:0191-2917
DOI:10.1094/PDIS-04-16-0423-RE