High-resolution structure of a modular hyperthermostable endo-β-1,4-mannanase from Thermotoga petrophila: The ancillary immunoglobulin-like module is a thermostabilizing domain
The endo-β-1,4-mannanase from the hyperthermostable bacterium Thermotoga petrophila (TpMan) is an enzyme that catalyzes the hydrolysis of mannan and heteromannan polysaccharides. Of the three domains that comprise TpMan, the N-terminal GH5 catalytic domain and the C-terminal carbohydrate-binding dom...
Saved in:
Published in | Biochimica et biophysica acta. Proteins and proteomics Vol. 1868; no. 8; p. 140437 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.08.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The endo-β-1,4-mannanase from the hyperthermostable bacterium Thermotoga petrophila (TpMan) is an enzyme that catalyzes the hydrolysis of mannan and heteromannan polysaccharides. Of the three domains that comprise TpMan, the N-terminal GH5 catalytic domain and the C-terminal carbohydrate-binding domain are connected through a central ancillary domain of unknown structure and function. In this study, we report the partial crystal structure of the TpMan at 1.45 Å resolution, so far, the first modular hyperthermostable endo-β-1,4-mannanase structure determined. The structure exhibits two domains, a (β/α)8-barrel GH5 catalytic domain connected via a linker to the central domain with an immunoglobulin-like β-sandwich fold formed of seven β-strands. Functional analysis showed that whereas the immunoglobulin-like domain does not have the carbohydrate-binding function, it stacks on the GH5 catalytic domain acting as a thermostabilizing domain and allowing operation at hyperthermophilic conditions. The carbohydrate-binding domain is absent in the crystal structure most likely due to its high flexibility around the immunoglobulin-like domain which may act also as a pivot. These results represent new structural and functional information useful on biotechnological applications for biofuel and food industries.
•High-resolution structure of the endo-β-1,4-mannanase from T. petrophila (TpMan).•TpMan is flexible while the truncated TpMan behaves like a compact molecule.•Central domain stacks on the catalytic domain forming a large interface area.•Central domain has an immunoglobulin-like β-sandwich fold.•The central ancillary immunoglobulin-like module is a thermostabilizing domain. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1570-9639 1878-1454 |
DOI: | 10.1016/j.bbapap.2020.140437 |