Comparison of Independent Evolutionary Origins Reveals Both Convergence and Divergence in the Metabolic Mechanisms of Symbiosis
Through the merger of previously independent lineages, symbiosis promotes the acquisition of new traits and exploitation of inaccessible ecological niches [1, 2], driving evolutionary innovation and important ecosystem functions [3–6]. The transient nature of establishment makes study of symbiotic o...
Saved in:
Published in | Current biology Vol. 30; no. 2; pp. 328 - 334.e4 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
20.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Through the merger of previously independent lineages, symbiosis promotes the acquisition of new traits and exploitation of inaccessible ecological niches [1, 2], driving evolutionary innovation and important ecosystem functions [3–6]. The transient nature of establishment makes study of symbiotic origins difficult, but experimental comparison of independent origins could reveal the degree of convergence in the underpinning mechanisms [7, 8]. We compared the metabolic mechanisms of two independent origins of Paramecium bursaria-Chlorella photosymbiosis [9–11] using a reciprocal metabolomic pulse-chase method. This showed convergent patterns of nutrient exchange and utilization for host-derived nitrogen in the Chlorella genotypes [12, 13] and symbiont-derived carbon in the P. bursaria genotypes [14, 15]. Consistent with a convergent primary nutrient exchange, partner-switched host-symbiont pairings were functional. Direct competition of hosts containing native or recombined symbionts against isogenic symbiont-free hosts showed that the fitness benefits of symbiosis for hosts increased with irradiance but varied by genotype. Global metabolism varied more between the Chlorella than the P. bursaria genotypes and suggested divergent mechanisms of light management. Specifically, the algal symbiont genotypes either produced photo-protective carotenoid pigments at high irradiance or more chlorophyll, resulting in corresponding differences in photosynthetic efficiency and non-photochemical quenching among host-symbiont pairings. These data suggest that the multiple origins of P. bursaria-Chlorella symbiosis use a convergent nutrient exchange, whereas other photosynthetic traits linked to functioning of photosymbiosis have diverged. Although convergence enables partner switching among diverse strains, phenotypic mismatches resulting from divergence of secondary symbiotic traits could mediate host-symbiont specificity in nature.
•Paramecium-Chlorella symbiosis has evolved independently multiple times•Independent origins use a convergent nutrient exchange, enabling partner switching•Chlorella genotypes have evolved divergent mechanisms to cope with excess light•Consequent phenotypic mismatches could mediate host-symbiont specificity
Sørensen et al. compare multiple independent evolutionary origins of Paramecium-Chlorella symbiosis to reveal the underpinning metabolic mechanisms. Although the independent origins use a convergent nutrient exchange, they have diverged in traits linked to photosynthesis, which could mediate host-symbiont specificity in nature. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0960-9822 1879-0445 |
DOI: | 10.1016/j.cub.2019.11.053 |