Disulfide Bond Engineering to Monitor Conformational Opening of Apolipophorin III During Lipid Binding

Apolipophorin III (apoLp-III) from the Sphinx moth, Manduca sexta , is an exchangeable, amphipathic apolipoprotein that alternately exists in water-soluble and lipid-bound forms. It is organized as a five-helix bundle in solution, which has been postulated to open at putative hinge domains to expose...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 271; no. 43; pp. 26855 - 26862
Main Authors Narayanaswami, V, Wang, J, Kay, C M, Scraba, D G, Ryan, R O
Format Journal Article
LanguageEnglish
Published United States American Society for Biochemistry and Molecular Biology 25.10.1996
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Apolipophorin III (apoLp-III) from the Sphinx moth, Manduca sexta , is an exchangeable, amphipathic apolipoprotein that alternately exists in water-soluble and lipid-bound forms. It is organized as a five-helix bundle in solution, which has been postulated to open at putative hinge domains to expose the hydrophobic interior, thereby facilitating interaction with the lipoprotein surface (Breiter, D. R., Kanost, M. R., Benning, M. M., Wesenberg, G., Law, J. H., Wells, M. A., Rayment, I., and Holden, H. M. (1991) Biochemistry 30, 603-608). To test this hypothesis, we engineered two cysteine residues in apoLp-III, which otherwise lacks cysteine, by site-directed mutagenesis at Asn-40 and Leu-90. Under oxidizing conditions the two cysteines spontaneously form a disulfide bond, which should tether the helix bundle and thereby prevent opening and concomitant lipid interaction. N40C/L90C apoLp-III was overexpressed in Escherichia coli and characterized for disulfide bond formation, secondary structure content, and stability, under both oxidizing and reducing conditions. Functional characterization was carried out by comparing the abilities of the oxidized and reduced protein to associate with modified lipoproteins in vitro . While the reduced form behaved like wild type apoLp-III, the oxidized form was unable to associate with lipoproteins. These results suggest that opening of the helix bundle is required for interaction with lipoproteins and provide a molecular basis for the dual existence of water-soluble and lipid-bound forms of apoLp-III. However, in phospholipid bilayer association assays, wild type, reduced, and oxidized N40C/L90C apoLp-III exhibited similar abilities to transform dimyristoylphosphatidylcholine multilamellar vesicles to disc-like complexes, as judged by electron microscopy. These data emphasize that underlying differences exist in initiating or maintaining a stable interaction of apoLp-III with phospholipid disc complexes versus spherical lipoprotein surfaces.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.271.43.26855