Accuracy evaluation of unsteady CFD numerical schemes by vortex preservation
Numerical uncertainty is an important but sensitive subject in computational fluid dynamics and there is a need for improved methods to quantify calculation accuracy. A known analytical solution, a Lamb-type vortex unsteady movement in a free stream, is compared to the numerical solutions obtained f...
Saved in:
Published in | Computers & fluids Vol. 24; no. 8; pp. 883 - 895 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
1995
Elsevier Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Numerical uncertainty is an important but sensitive subject in computational fluid dynamics and there is a need for improved methods to quantify calculation accuracy. A known analytical solution, a Lamb-type vortex unsteady movement in a free stream, is compared to the numerical solutions obtained from different numerical schemes to assess their temporal accuracies. Solving the Navier-Stokes equations and using the standard Linearized Block Implicit ADI scheme, with first order accuracy in time second order in space, a vortex is convected and results show the rapid diffusion of the vortex. These calculations were repeated with the iterative implicit ADI scheme which has second-order time accuracy. A considerable improvement was noticed. The results of a similar calculation using an iterative fifth-order spatial upwind-biased scheme is also considered. The findings of the present paper demonstrate the needs and provide a means for quantification of both distribution and absolute values of numerical error. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0045-7930 1879-0747 |
DOI: | 10.1016/0045-7930(95)00023-6 |