Wheel running for 26 weeks is associated with sustained vascular plasticity in the rat motor cortex

Vascular pathologies represent the leading causes of mortality worldwide. The nervous system has evolved mechanisms to compensate for the cerebral hypoxia caused by many of these conditions. Vessel dilation and growth of new vessels are two prominent responses to hypoxia, both of which play a critic...

Full description

Saved in:
Bibliographic Details
Published inBehavioural brain research Vol. 380; p. 112447
Main Authors Stevenson, Morgan E., Kay, Jacob J.M., Atry, Farid, Wickstrom, Alexander T., Krueger, Josephine R., Pashaie, Ramin E., Swain, Rodney A.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 17.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Vascular pathologies represent the leading causes of mortality worldwide. The nervous system has evolved mechanisms to compensate for the cerebral hypoxia caused by many of these conditions. Vessel dilation and growth of new vessels are two prominent responses to hypoxia, both of which play a critical role in maintaining cerebral homeostasis. One way to facilitate cerebrovascular plasticity, and develop neuroprotection against vascular pathologies, is through aerobic exercise. The present study explored the long-term consequences of aerobic exercise on vascular structure and function in the motor cortex. Rats were assigned to a sedentary condition or were provided access to running wheels for 26 weeks. Rats were then anesthetized, and angiograms were captured using spectral domain optical coherence tomography (SD-OCT) to explore cerebrovascular reactivity in response to altered oxygen and carbon dioxide status. Following this procedure, all rats were euthanized, and unbiased stereological quantification of blood vessel density was collected from sections of the primary motor cortex infused with India ink. Results demonstrated that chronic exercise increased capillary and arteriole surface area densities and enhanced arteriole reactivity in response to hypercapnia-hypoxia, as displayed by increased vasodilation within the motor cortex of exercised animals.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0166-4328
1872-7549
DOI:10.1016/j.bbr.2019.112447