The nsdD gene encodes a putative GATA‐type transcription factor necessary for sexual development of Aspergillus nidulans

The ability to reproduce both sexually and asexually is one of the characteristics of the homothalic ascomycete Aspergillus nidulans. Unlike the other Aspergillus species, A. nidulans undergoes sexual development that seems to be regulated by internal and external stimuli. To begin to understand the...

Full description

Saved in:
Bibliographic Details
Published inMolecular microbiology Vol. 41; no. 2; pp. 299 - 309
Main Authors Han, Kap‐Hoon, Han, Kyu‐Yong, Yu, Jae‐Hyuk, Chae, Keon‐Sang, Jahng, Kwang‐Yeop, Han, Dong‐Min
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Ltd 01.07.2001
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The ability to reproduce both sexually and asexually is one of the characteristics of the homothalic ascomycete Aspergillus nidulans. Unlike the other Aspergillus species, A. nidulans undergoes sexual development that seems to be regulated by internal and external stimuli. To begin to understand the sexual reproduction of A. nidulans we previously isolated and characterized several NSD (never in sexual development) mutants that failed to produce any sexual reproductive organs, and identified four complementation groups, nsdA, nsdB, nsdC, and nsdD. The nsdD gene has been isolated, and it is predicted to encode a GATA‐type transcription factor with the type IVb zinc finger DNA‐binding domain. The mRNA of the nsdD gene started to accumulate in the early phase of vegetative growth, and the level increased as sexual development proceeded. However, it decreased during asexual sporulation and no nsdD mRNA was detected in conidia. Deletion of nsdD resulted in no cleistothecia (fruiting bodies) formation, even under the conditions that preferentially promoted sexual development, indicating that nsdD is necessary for sexual development. In contrast, when the nsdD gene was over‐expressed, sexual‐specific organ (Hülle cell) was formed even in submerged culture, which normally completely blocked sexual development, and the number of cleistothecia was also dramatically increased on solid medium. These results lead us to propose that the nsdD gene functions in activating sexual development of A. nidulans. Multiple copies of the nsdD gene could suppress nsdB5 and veA1, indicating that either nsdD acts downstream of these genes or possibly functions in overlapping pathway(s).
Bibliography:
Present address: Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0950-382X
1365-2958
DOI:10.1046/j.1365-2958.2001.02472.x