Effects of a Proposed Hydraulic Project on the Hydrodynamics in the Poyang Lake Floodplain System, China

Knowledge of dam construction in floodplain systems and its hydrodynamic effects plays a critical role in managing various kinds of floodplains. This study uses 3D floodplain hydrodynamic modeling to explore the possible effects of a proposed hydraulic project in Poyang Lake (PLHP) on the hydrodynam...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of environmental research and public health Vol. 18; no. 15; p. 8072
Main Authors Zhao, Guizhang, Li, Yunliang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 30.07.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Knowledge of dam construction in floodplain systems and its hydrodynamic effects plays a critical role in managing various kinds of floodplains. This study uses 3D floodplain hydrodynamic modeling to explore the possible effects of a proposed hydraulic project in Poyang Lake (PLHP) on the hydrodynamics, exemplified by a large floodplain system. Simulations showed that the water levels across most lake regions presented more significant changes than in the floodplain areas during the study period. The increased water levels upstream from the PLHP (~1.0 m) were distinctly higher than that downstream (~0.1 m). The PLHP may decrease the magnitude of the water velocities in the main channels of the lake, whereas velocities may experience mostly minor changes in the floodplains, depending upon the altered flow dynamics and transport. On average, the water temperature may exhibit mostly minor changes (~<1.0 °C) for both the horizontal and vertical scales within the flood-pulse-influenced lake system. Additionally, the model results indicated that the outflow process caused by the PLHP may be altered from the natural discharge into the Yangtze River to frequent backflow events during the storage period, demonstrating the non-negligible effect of the PLHP on the water supply for the downstream Yangtze River in the future.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph18158072