State Estimation and Sliding-Mode Control of Markovian Jump Singular Systems
This paper is concerned with the state estimation and sliding-mode control problems for continuous-time Markovian jump singular systems with unmeasured states. Firstly, a new necessary and sufficient condition is proposed in terms of strict linear matrix inequality (LMI), which guarantees the stocha...
Saved in:
Published in | IEEE transactions on automatic control Vol. 55; no. 5; pp. 1213 - 1219 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.05.2010
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper is concerned with the state estimation and sliding-mode control problems for continuous-time Markovian jump singular systems with unmeasured states. Firstly, a new necessary and sufficient condition is proposed in terms of strict linear matrix inequality (LMI), which guarantees the stochastic admissibility of the unforced Markovian jump singular system. Then, the sliding-mode control problem is considered by designing an integral sliding surface function. An observer is designed to estimate the system states, and a sliding-mode control scheme is synthesized for the reaching motion based on the state estimates. It is shown that the sliding mode in the estimation space can be attained in a finite time. Some conditions for the stochastic admissibility of the overall closed-loop system are derived. Finally, a numerical example is provided to illustrate the effectiveness of the proposed theory. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2010.2042234 |