A robust optimization approach to steel grade design problem subject to uncertain yield and demand

This work formulates and investigates a steel grade design problem (SGDP) arising from a production process of steelmaking continuous casting. For the first time, we consider uncertain yield and demand in SGDP and construct a two-stage robust optimisation model accordingly. Then, we propose an enhan...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of production research Vol. 61; no. 15; pp. 5176 - 5192
Main Authors Zhang, Qi, Liu, Shixin, Zhou, MengChu
Format Journal Article
LanguageEnglish
Published London Taylor & Francis 03.08.2023
Taylor & Francis LLC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This work formulates and investigates a steel grade design problem (SGDP) arising from a production process of steelmaking continuous casting. For the first time, we consider uncertain yield and demand in SGDP and construct a two-stage robust optimisation model accordingly. Then, we propose an enhanced column-and-constraint generation algorithm to obtain high-quality solutions. By exploiting the problem characteristics, we first use a Lagrangian relaxation method to decompose SGDP into multiple subproblems and then apply a standard column-and-constraint generation algorithm to solve the latter. At last, we test the proposed algorithm by extensive instances constructed based on actual production rules of a steelmaking shop. Numerical results show that it can effectively solve large-scale SGDPs. The obtained plan is better than those obtained by a commonly-used and standard column-and-constraint generation algorithm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0020-7543
1366-588X
DOI:10.1080/00207543.2022.2098872