Mapping of intermodal beat length distribution in an elliptical-core two-mode fiber based on Brillouin dynamic grating

Distributed measurement and characterization of the intermodal beat length between LP(01) and LP(11) modes in an elliptical-core (e-core) two-mode fiber (TMF) are demonstrated by the analysis of Brillouin dynamic grating (BDG) spectra. The BDG is generated by the stimulated Brillouin scattering (SBS...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 22; no. 14; pp. 17292 - 17302
Main Authors Kim, Yong Hyun, Song, Kwang Yong
Format Journal Article
LanguageEnglish
Published United States 14.07.2014
Online AccessGet full text

Cover

Loading…
More Information
Summary:Distributed measurement and characterization of the intermodal beat length between LP(01) and LP(11) modes in an elliptical-core (e-core) two-mode fiber (TMF) are demonstrated by the analysis of Brillouin dynamic grating (BDG) spectra. The BDG is generated by the stimulated Brillouin scattering (SBS) of the LP(01) mode and probed by the LP(11) mode, with four different pairs of the spatial and polarization modes in the e-core TMF applied for the pump and the probe (LP(01)x-LP(11)y, LP(01)y-LP(11)y, LP(01)x-LP(11)x, and LP(01)y-LP(11)x). A mode selective coupler (MSC) is used for selective launch and retrieval of the LP(01) and the LP(11) modes in the BDG operation, and the local reflection spectra from the BDG are obtained by an optical time-domain analysis. A distribution map of the intermodal beat length is acquired for each pair of the pump-probe modes with a 1.5 m spatial resolution along a 75 m e-core TMF. Temperature- and strain-dependence of the BDG spectrum is also evaluated for each case.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/oe.22.017292