Long-term effects of fire frequency on carbon storage and productivity of boreal forests: a modeling study

Climate change is predicted to shorten the fire interval in boreal forests. Many studies have recorded positive effects of fire on forest growth over a few decades, but few have modeled the long-term effects of the loss of carbon and nitrogen to the atmosphere. We used a process-based, dynamic, fore...

Full description

Saved in:
Bibliographic Details
Published inTree physiology Vol. 24; no. 7; pp. 765 - 773
Main Authors Thornley, J.H.M, Cannell, M.G.R
Format Journal Article
LanguageEnglish
Published Canada 01.07.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Climate change is predicted to shorten the fire interval in boreal forests. Many studies have recorded positive effects of fire on forest growth over a few decades, but few have modeled the long-term effects of the loss of carbon and nitrogen to the atmosphere. We used a process-based, dynamic, forest ecosystem model, which couples the carbon, nitrogen and water cycles, to simulate the effects of fire frequency on coniferous forests in the climate of Prince Albert, Saskatchewan. The model was calibrated to simulate observed forest properties. The model predicted rapid short-term recovery of net primary productivity (NPP) after fire, but in the long term, supported the hypotheses that (1) current NPP and carbon content of boreal forests are lower than they would be without periodic fire, and (2) any increase in fire frequency in the future will tend to lower NPP and carbon storage. Lower long-term NPP and carbon storage were attributable to (1) loss of carbon on combustion, equal to about 20% of NPP over a 100-200 year fire cycle, (2) loss of nitrogen by volatilization in fire, equal to about 3-4 kg N ha-1 year-1 over a 100-200 year fire cycle, and (3) the fact that the normal fire cycle is much shorter than the time taken for the forest (especially the soil) to reach an equilibrium carbon and nitrogen content. It was estimated that a shift in fire frequency from 200 to 100 years over 1000 Mha of boreal forest would release an average of about 0.1 Gt C year-1 over many centuries.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0829-318X
1758-4469
DOI:10.1093/treephys/24.7.765