TRANSFORMATION OF STURM–LIOUVILLE PROBLEMS WITH DECREASING AFFINE BOUNDARY CONDITIONS

We consider Sturm–Liouville boundary-value problems on the interval $[0,1]$ of the form $-y''+qy=\lambda y$ with boundary conditions $y'(0)\sin\alpha=y(0)\cos\alpha$ and $y'(1)=(a\lambda+b)y(1)$, where $a\lt0$. We show that via multiple Crum–Darboux transformations, this boundary...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Edinburgh Mathematical Society Vol. 47; no. 3; pp. 533 - 552
Main Authors Binding, Paul A., Browne, Patrick J., Code, Warren J., Watson, Bruce A.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.10.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We consider Sturm–Liouville boundary-value problems on the interval $[0,1]$ of the form $-y''+qy=\lambda y$ with boundary conditions $y'(0)\sin\alpha=y(0)\cos\alpha$ and $y'(1)=(a\lambda+b)y(1)$, where $a\lt0$. We show that via multiple Crum–Darboux transformations, this boundary-value problem can be transformed ‘almost’ isospectrally to a boundary-value problem of the same form, but with the boundary condition at $x=1$ replaced by $y'(1)\sin\beta=y(1)\cos\beta$, for some $\beta$. AMS 2000 Mathematics subject classification: Primary 34B07; 47E05; 34L05
Bibliography:PII:S0013091504000197
ArticleID:00019
ark:/67375/6GQ-CFSXN8S4-7
istex:78E738A86DAA8B66287F86D8C260A238BFF2D1F0
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0013-0915
1464-3839
DOI:10.1017/S0013091504000197