TRANSFORMATION OF STURM–LIOUVILLE PROBLEMS WITH DECREASING AFFINE BOUNDARY CONDITIONS
We consider Sturm–Liouville boundary-value problems on the interval $[0,1]$ of the form $-y''+qy=\lambda y$ with boundary conditions $y'(0)\sin\alpha=y(0)\cos\alpha$ and $y'(1)=(a\lambda+b)y(1)$, where $a\lt0$. We show that via multiple Crum–Darboux transformations, this boundary...
Saved in:
Published in | Proceedings of the Edinburgh Mathematical Society Vol. 47; no. 3; pp. 533 - 552 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.10.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We consider Sturm–Liouville boundary-value problems on the interval $[0,1]$ of the form $-y''+qy=\lambda y$ with boundary conditions $y'(0)\sin\alpha=y(0)\cos\alpha$ and $y'(1)=(a\lambda+b)y(1)$, where $a\lt0$. We show that via multiple Crum–Darboux transformations, this boundary-value problem can be transformed ‘almost’ isospectrally to a boundary-value problem of the same form, but with the boundary condition at $x=1$ replaced by $y'(1)\sin\beta=y(1)\cos\beta$, for some $\beta$. AMS 2000 Mathematics subject classification: Primary 34B07; 47E05; 34L05 |
---|---|
Bibliography: | PII:S0013091504000197 ArticleID:00019 ark:/67375/6GQ-CFSXN8S4-7 istex:78E738A86DAA8B66287F86D8C260A238BFF2D1F0 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
ISSN: | 0013-0915 1464-3839 |
DOI: | 10.1017/S0013091504000197 |