Online Learning and Classification of EMG-Based Gestures on a Parallel Ultra-Low Power Platform Using Hyperdimensional Computing
This paper presents a wearable electromyographic gesture recognition system based on the hyperdimensional computing paradigm, running on a programmable parallel ultra-low-power (PULP) platform. The processing chain includes efficient on-chip training, which leads to a fully embedded implementation w...
Saved in:
Published in | IEEE transactions on biomedical circuits and systems Vol. 13; no. 3; pp. 516 - 528 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents a wearable electromyographic gesture recognition system based on the hyperdimensional computing paradigm, running on a programmable parallel ultra-low-power (PULP) platform. The processing chain includes efficient on-chip training, which leads to a fully embedded implementation with no need to perform any offline training on a personal computer. The proposed solution has been tested on 10 subjects in a typical gesture recognition scenario achieving 85% average accuracy on 11 gestures recognition, which is aligned with the state-of-the-art, with the unique capability of performing online learning. Furthermore, by virtue of the hardware friendly algorithm and of the efficient PULP system-on-chip (Mr. Wolf) used for prototyping and evaluation, the energy budget required to run the learning part with 11 gestures is 10.04 mJ, and 83.2 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>J per classification. The system works with a average power consumption of 10.4 mW in classification, ensuring around 29 h of autonomy with a 100 mAh battery. Finally, the scalability of the system is explored by increasing the number of channels (up to 256 electrodes), demonstrating the suitability of our approach as universal, energy-efficient biopotential wearable recognition framework. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1932-4545 1940-9990 1940-9990 |
DOI: | 10.1109/TBCAS.2019.2914476 |