BEATS: An Open-Source, High-Precision, Multi-Channel EEG Acquisition Tool System

Stable and accurate electroencephalogram (EEG) signal acquisition is fundamental in non-invasive brain-computer interface (BCI) technology. Commonly used EEG acquisition systems' hardware and software are usually closed-source. Its inability to flexible expansion and secondary development is a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. 16; no. 6; pp. 1287 - 1298
Main Authors Zou, Bing, Zheng, Yubo, Shen, Mu, Luo, Yingying, Li, Lei, Zhang, Lin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Stable and accurate electroencephalogram (EEG) signal acquisition is fundamental in non-invasive brain-computer interface (BCI) technology. Commonly used EEG acquisition systems' hardware and software are usually closed-source. Its inability to flexible expansion and secondary development is a major obstacle to real-time BCI research. This paper presents the Beijing University of Posts and Telecommunications EEG Acquisition Tool System named BEATS. It implements a comprehensive system from hardware to software, composed of the analog front end, microprocessor, and software platform. BEATS is capable of collecting 32-channel EEG signals at a guaranteed sampling rate of 4 kHz with wireless transmission. Compared to state-of-the-art systems used in many EEG fields, it displays a better sampling rate. Using techniques including direct memory access, first in first out, and timer, the precision and stability of the acquisition are ensured at the microsecond level. An evaluation is conducted during 24 hours of continuous acquisitions. There are no packet losses and the average maximum delay is only 0.07 s/h. Moreover, as an open-source system, BEATS provides detailed design files, and adopts a plug-in structure and easy-to-access materials, which makes it can be quickly reproduced.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1932-4545
1940-9990
DOI:10.1109/TBCAS.2022.3230500