Metal Ion Release from Engineered Stone Dust in Artificial Lysosomal Fluid—Variation with Time and Stone Type

Inhalational exposure to dust from engineered stone (ES), also known as artificial or composite stone, is associated with a specific disease profile, namely accelerated silicosis, and scleroderma. The pathogenic mechanisms are poorly understood, particularly the role of resin and metal ions. Metal i...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of environmental research and public health Vol. 18; no. 12; p. 6391
Main Authors Maharjan, Preeti, Crea, Joseph, Tkaczuk, Michael, Gaskin, Sharyn, Pisaniello, Dino
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 12.06.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Inhalational exposure to dust from engineered stone (ES), also known as artificial or composite stone, is associated with a specific disease profile, namely accelerated silicosis, and scleroderma. The pathogenic mechanisms are poorly understood, particularly the role of resin and metal ions. Metal ions are present in pigments and constituent minerals and may be considered potential contributors to toxicity. The aim of this preliminary study was to understand the solubility of ES-containing metals in artificial lysosomal fluid (ALF) simulating the acidic intracellular environment of the lung macrophage lysosome. Differences with respect to ES types and temporal release were explored. Ten ES products of variable colour and company origin were comminuted and assessed for four different metals, solubilized into ALF solutions at 1,2,4 and 8 weeks at 37 °C. There was significant variability in metal release, particularly with regard to iron and manganese, which could be correlated with the reflected brightness of the stone. A majority of the available Mn, Fe, Al and Ti was solubilized. Time trends for metal release varied with ES type but also with metal ion. The data suggest a high metal ion bioavailability once engulfed by lung macrophages. There is a need to investigate a wider range of ES dust and relate metal content to markers of ES toxicity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph18126391