The unusual X-form DNA in oligodeoxynucleotides: dependence of stability on the base sequence and length
X-form is an unusual double helix of DNA adopted by poly(dA-dT) or (dT-dA)4 at high concentrations of CsF. On the other hand, poly(dA), poly(dT), (dA-dT)4 and most other DNAs do not adopt this conformer. Here we demonstrate that the X-form is strongly destabilized by GC pairs or even minute perturba...
Saved in:
Published in | Journal of biomolecular structure & dynamics Vol. 13; no. 6; p. 999 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.06.1996
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | X-form is an unusual double helix of DNA adopted by poly(dA-dT) or (dT-dA)4 at high concentrations of CsF. On the other hand, poly(dA), poly(dT), (dA-dT)4 and most other DNAs do not adopt this conformer. Here we demonstrate that the X-form is strongly destabilized by GC pairs or even minute perturbations of the alternating pyrimidinepurine sequence. For example, the 30-mer d(TATAAT)5, containing five tandem repeats of the Pribnow box, fails to isomerize into the X-form. After (dT-dA)4, the 16-mer (dT-dA)8 is shown to be the second most predisposed oligodeoxynucleotide in the (dT-dA)n series to isomerize into the X-form while the duplex lengths corresponding to n = 3,5,6,7,9,12 and 20 make the X-form unstable even in the strictly alternating (dT-dA)n sequence. Consequently, the (dT-dA)n duplex length is also a crucial factor of the X-form stability on the oligodeoxynucleotide level. We discuss a possibility that the X-form is a solution counterpart of the D-form adopted in dehydrated poly(dA-dT) fibers because properties of these two conformers are remarkably similar in many respects. |
---|---|
ISSN: | 0739-1102 |
DOI: | 10.1080/07391102.1996.10508914 |