A Model Reduction Approach for OFDM Channel Estimation Under High Mobility Conditions

Orthogonal frequency-division multiplexing (OFDM) combines the advantages of high performance and relatively low implementation complexity. However, for reliable coherent detection of the input signal, the OFDM receiver needs accurate channel information. When the channel exhibits fast time variatio...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 58; no. 4; pp. 2181 - 2193
Main Authors Al-Naffouri, T.Y., Islam, K.M.Z., Al-Dhahir, N., Lu, S.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Orthogonal frequency-division multiplexing (OFDM) combines the advantages of high performance and relatively low implementation complexity. However, for reliable coherent detection of the input signal, the OFDM receiver needs accurate channel information. When the channel exhibits fast time variation as it is the case with several recent OFDM-based mobile broadband wireless standards (e.g., WiMAX, LTE, DVB-H), channel estimation at the receiver becomes quite challenging for two main reasons: 1) the receiver needs to perform this estimation more frequently and 2) channel time-variations introduce intercarrier interference among the OFDM subcarriers which can degrade the performance of conventional channel estimation algorithms significantly. In this paper, we propose a new pilot-aided algorithm for the estimation of fast time-varying channels in OFDM transmission. Unlike many existing OFDM channel estimation algorithms in the literature, we propose to perform channel estimation in the frequency domain, to exploit the structure of the channel response (such as frequency and time correlations and bandedness), optimize the pilot group size and perform most of the computations offline resulting in high performance at substantial complexity reductions.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2009.2039732