ESTIMATES FOR MAHLER’S MEASURE OF A LINEAR FORM

Let $L_{\bm{a}}(\bm{z})=a_1z_1+a_2z_2+\cdots+a_Nz_N$ be a linear form in $N$ complex variables $z_1,z_2,\dots,z_N$ with non-zero coefficients. We establish several estimates for the logarithmic Mahler measure of $L_{\bm{a}}$. In general, we show that the logarithmic Mahler measure of $L_{\bm{a}}(\bm...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Edinburgh Mathematical Society Vol. 47; no. 2; pp. 473 - 494
Main Authors Rodriguez-Villegas, Fernando, Toledano, Ricardo, Vaaler, Jeffrey D.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.06.2004
Subjects
Online AccessGet full text
ISSN0013-0915
1464-3839
DOI10.1017/S0013091503000701

Cover

Loading…
More Information
Summary:Let $L_{\bm{a}}(\bm{z})=a_1z_1+a_2z_2+\cdots+a_Nz_N$ be a linear form in $N$ complex variables $z_1,z_2,\dots,z_N$ with non-zero coefficients. We establish several estimates for the logarithmic Mahler measure of $L_{\bm{a}}$. In general, we show that the logarithmic Mahler measure of $L_{\bm{a}}(\bm{z})$ and the logarithm of the norm of $\bm{a}$ differ by a bounded amount that is independent of $N$. We prove a further estimate which is useful for making an approximate numerical evaluation of the logarithmic Mahler measure. AMS 2000 Mathematics subject classification: Primary 11C08; 11Y35; 26D15
Bibliography:PII:S0013091503000701
istex:AB2F9834A7A3325D3FA1D2669C4B9815B1268188
ArticleID:00070
ark:/67375/6GQ-BFFRQ4M4-D
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0013-0915
1464-3839
DOI:10.1017/S0013091503000701