O-linked N-acetylgalactosamine modification is present on the tumor suppressor p53
Mucin-type O-glycosylation (referred to as O-GalNAc glycosylation) is the most abundant O-glycosylation on membrane and secretory proteins. Recently several evidences suggest that nuclear or cytoplasmic proteins might also have O-GalNAc glycosylation. However, what nucleocytoplasmic proteins are O-G...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1864; no. 8; p. 129635 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Mucin-type O-glycosylation (referred to as O-GalNAc glycosylation) is the most abundant O-glycosylation on membrane and secretory proteins. Recently several evidences suggest that nuclear or cytoplasmic proteins might also have O-GalNAc glycosylation. However, what nucleocytoplasmic proteins are O-GalNAc glycosylated and what the biological function of this modification in cells are still poorly understood. Previously, we reported the tumor suppressor p53 could be O-GalNAc glycosylated in vitro. To investigate the existence and function of O-GalNAc glycosylation on nucleocytoplasmic proteins in cell, p53 as a representative nucleocytoplasmic protein was studied.
Using lectin blotting with GalNAc specific lectins, enzymatic treatments with O-GlcNAcase, core 1 β1, 3-galactosyltransferase and O-glycosidase, and metabolic labeling with un-O-acetylated GalNAz in UDP-Gal/UDP-GalNAc 4-epimerase (GALE) knockout cells, we validated the O-GalNAc glycosylation on p53. Using mass spectrometry analysis and site-directed mutagenesis, we identified the glycosylated sites and studied the functions of O-GalNAc glycosylation on p53.
The p53 was O-GalNAc glycosylated in cells. Ser121 residue was one of the glycosylated sites on p53. The O-GalNAc glycosylation at Ser121 was associated with the stability and activity of p53.
These results revealed that the O-GalNAc glycosylation was a novel modification on p53.
Our study provided a pilot evidence that the O-GalNAc glycosylation existed on nucleocytoplasmic protein.
•The O-GalNAc glycosylation was a novel modification on the tumor suppressor p53.•Ser121 residue was one of O-GalNAc glycosylated sites on p53 and was associated with the stability and activity of p53.•This study provided a pilot evidence that O-GalNAc glycosylation existed on nucleocytoplasmic protein. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0304-4165 1872-8006 1872-8006 |
DOI: | 10.1016/j.bbagen.2020.129635 |