Parameterisation of demand-driven material requirements planning: a multi-objective genetic algorithm
Demand-Driven Material Requirements Planning (DDMRP) is a recent inventory management method that has generated considerable interest in both academia and industry. Many recent papers have demonstrated the superiority of DDMRP over classical methods like MRP or Kanban, an observation confirmed by co...
Saved in:
Published in | International journal of production research Vol. 61; no. 15; pp. 5134 - 5155 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Taylor & Francis
03.08.2023
Taylor & Francis LLC |
Subjects | |
Online Access | Get full text |
ISSN | 0020-7543 1366-588X |
DOI | 10.1080/00207543.2022.2098074 |
Cover
Abstract | Demand-Driven Material Requirements Planning (DDMRP) is a recent inventory management method that has generated considerable interest in both academia and industry. Many recent papers have demonstrated the superiority of DDMRP over classical methods like MRP or Kanban, an observation confirmed by companies that have implemented DDMRP. However, DDMRP depends on many parameters that affect its performance. Only general rules are given by the authors of the method to fix these parameters but no algorithm. The present paper aims to fill this gap by proposing a multi-objective optimisation algorithm to fix a set of eight identified parameters. The suggested genetic algorithm is coupled with a simulation algorithm that computes the objective functions. Two opposing objective functions are considered: first, the maximisation of orders delivered on-time to the customer and, second, the minimisation of on-hand inventory. A set of data instances was generated to test the suggested method. Fronts of non-dominated solutions are found for all these instances. |
---|---|
AbstractList | Demand-Driven Material Requirements Planning (DDMRP) is a recent inventory management method that has generated considerable interest in both academia and industry. Many recent papers have demonstrated the superiority of DDMRP over classical methods like MRP or Kanban, an observation confirmed by companies that have implemented DDMRP. However, DDMRP depends on many parameters that affect its performance. Only general rules are given by the authors of the method to fix these parameters but no algorithm. The present paper aims to fill this gap by proposing a multi-objective optimisation algorithm to fix a set of eight identified parameters. The suggested genetic algorithm is coupled with a simulation algorithm that computes the objective functions. Two opposing objective functions are considered: first, the maximisation of orders delivered on-time to the customer and, second, the minimisation of on-hand inventory. A set of data instances was generated to test the suggested method. Fronts of non-dominated solutions are found for all these instances. |
Author | Barth, Marc Lahrichi, Youssef Damand, David |
Author_xml | – sequence: 1 givenname: David surname: Damand fullname: Damand, David organization: HuManis laboratory at EM Strasbourg Business School – sequence: 2 givenname: Youssef surname: Lahrichi fullname: Lahrichi, Youssef email: youssef.lahrichi.contact@gmail.com organization: HuManis laboratory at EM Strasbourg Business School – sequence: 3 givenname: Marc surname: Barth fullname: Barth, Marc organization: HuManis laboratory at EM Strasbourg Business School |
BookMark | eNqFkEtLxTAQhYMoeH38BCHgupomfaS6UcQXCLpQcBfSdHLNpU2uk1zFf2_r1Y0LncXM4pxvhjk7ZNMHD4Qc5OwoZ5IdM8ZZXRbiiDPOx9ZIVhcbZJaLqspKKZ83yWzyZJNpm-zEuGBjlbKYEXjQqAdIgC7q5IKnwdIOBu27rEP3Bp4OelJ1TxFeVw5hAJ8iXfbae-fnJ1TTYdUnl4V2ASaNCJ2Dh-QM1f08oEsvwx7ZsrqPsP89d8nT1eXjxU12d399e3F-lxnRlClreMu4qYSpK8tL28haWMZLURZgLe-YyaGGUWAC6toU1oq2bVkFghtorMnFLjlc711ieF1BTGoRVujHk4pLXkteSC5H1-naZTDEiGCVcenr-YTa9SpnaspV_eSqplzVd64jXf6il-gGjR__cmdrznkbcNDvAftOJf3RB7SovXFRib9XfAI74ZLv |
CitedBy_id | crossref_primary_10_1007_s10696_024_09536_y crossref_primary_10_1016_j_cie_2024_109944 crossref_primary_10_1080_00207543_2022_2109219 crossref_primary_10_1016_j_ifacol_2024_09_134 crossref_primary_10_1080_00207543_2024_2328770 crossref_primary_10_1080_21681015_2023_2256962 crossref_primary_10_3390_app14073012 crossref_primary_10_1007_s12063_024_00503_2 crossref_primary_10_30657_pea_2024_30_37 crossref_primary_10_1007_s12597_024_00740_w crossref_primary_10_46465_endustrimuhendisligi_1433249 |
Cites_doi | 10.1080/16258312.2019.1589892 10.1007/978-3-319-07287-6_31 10.3926/jiem.2654 10.1155/2019/6496309 10.4324/9780429273018 10.1111/poms.13277 10.1080/00207543.2019.1650978 10.3926/jiem.3331 10.1016/0278-6125(94)90001-9 10.1016/j.cor.2009.06.002 10.1007/s11042-020-10139-6 10.1080/00207543.2021.2015808 10.4324/9781351218986 10.1155/2016/9328371 10.1080/00207543.2018.1464230 10.1155/2017/8635979 10.1063/1.4985449 10.1016/j.arcontrol.2007.02.007 10.1109/IESM45758.2019.8948198 10.1016/j.engappai.2018.08.011 10.1111/j.1475-3995.2011.00808.x 10.1080/00207543.2020.1849847 10.2139/ssrn.3305114 10.1016/j.ijpe.2016.02.016 10.1080/13675567.2015.1059411 10.1088/1757-899X/337/1/012055 10.1016/j.cie.2014.03.006 10.1016/j.bushor.2014.01.001 10.1109/4235.996017 10.1021/ie101645h 10.1007/978-3-319-17527-0_14 10.1007/978-3-030-85906-0_51 10.1080/12507970.2018.1547130 10.1260/1748-3018.9.1.41 |
ContentType | Journal Article |
Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 2022 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7SC 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1080/00207543.2022.2098074 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1366-588X |
EndPage | 5155 |
ExternalDocumentID | 10_1080_00207543_2022_2098074 2098074 |
Genre | Research Article |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29J 2DF 30N 4.4 5GY 5VS 8VB A8Z AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACGOD ACIWK ACNCT ACTIO ADCVX ADGTB ADXPE AEGXH AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AHQJS AIAGR AIJEM AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBD EBE EBO EBR EBS EBU EMK EPL ESTFP E~A E~B GTTXZ H13 HF~ HZ~ H~9 H~P I-F IPNFZ J.P KYCEM LJTGL M4Z ML~ NA5 NX~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TH9 TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION K1G 7SC 8FD F28 FR3 JQ2 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c395t-92b02c63c76f25f9873f025354eff2d0c1e7e25f03e77c4ff3bbb06e32ce9fc13 |
ISSN | 0020-7543 |
IngestDate | Wed Aug 13 04:50:01 EDT 2025 Thu Apr 24 23:03:08 EDT 2025 Tue Jul 01 03:30:24 EDT 2025 Wed Dec 25 09:04:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c395t-92b02c63c76f25f9873f025354eff2d0c1e7e25f03e77c4ff3bbb06e32ce9fc13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2827824828 |
PQPubID | 30924 |
PageCount | 22 |
ParticipantIDs | crossref_citationtrail_10_1080_00207543_2022_2098074 crossref_primary_10_1080_00207543_2022_2098074 informaworld_taylorfrancis_310_1080_00207543_2022_2098074 proquest_journals_2827824828 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-03 |
PublicationDateYYYYMMDD | 2023-08-03 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | International journal of production research |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis LLC |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC |
References | Orlicky Joseph A. (CIT0029) 1974 Pekarčíková Miriam (CIT0030) 2019; 10 CIT0010 CIT0012 CIT0034 CIT0011 CIT0033 Ptak Carol (CIT0031) 2011 CIT0014 CIT0036 CIT0013 CIT0035 CIT0016 CIT0038 CIT0015 CIT0018 CIT0017 CIT0039 Ptak Carol (CIT0032) 2016 CIT0019 Silver Edward A. (CIT0037) 1973; 14 CIT0041 CIT0040 CIT0021 CIT0043 CIT0020 CIT0042 CIT0001 CIT0023 CIT0022 CIT0044 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0006 CIT0028 CIT0009 CIT0008 |
References_xml | – volume: 14 start-page: 64 issue: 2 year: 1973 ident: CIT0037 publication-title: Production and Inventory Management – ident: CIT0007 doi: 10.1080/16258312.2019.1589892 – ident: CIT0017 – ident: CIT0034 doi: 10.1007/978-3-319-07287-6_31 – ident: CIT0021 doi: 10.3926/jiem.2654 – ident: CIT0024 doi: 10.1155/2019/6496309 – ident: CIT0028 doi: 10.4324/9780429273018 – ident: CIT0040 doi: 10.1111/poms.13277 – ident: CIT0042 doi: 10.1080/00207543.2019.1650978 – ident: CIT0003 doi: 10.3926/jiem.3331 – ident: CIT0016 doi: 10.1016/0278-6125(94)90001-9 – ident: CIT0025 – ident: CIT0015 doi: 10.1016/j.cor.2009.06.002 – ident: CIT0020 doi: 10.1007/s11042-020-10139-6 – ident: CIT0009 doi: 10.1080/00207543.2021.2015808 – ident: CIT0014 doi: 10.4324/9781351218986 – ident: CIT0018 doi: 10.1155/2016/9328371 – ident: CIT0027 doi: 10.1080/00207543.2018.1464230 – ident: CIT0019 doi: 10.1155/2017/8635979 – ident: CIT0036 doi: 10.1063/1.4985449 – ident: CIT0011 doi: 10.1016/j.arcontrol.2007.02.007 – volume-title: Material Requirements Planning: The New Way of Life in Production and Inventory Management year: 1974 ident: CIT0029 – ident: CIT0010 doi: 10.1109/IESM45758.2019.8948198 – ident: CIT0023 doi: 10.1016/j.engappai.2018.08.011 – ident: CIT0012 – volume-title: Demand Driven Material Requirements Planning (DDMRP): Version 2 year: 2016 ident: CIT0032 – volume: 10 start-page: 50 year: 2019 ident: CIT0030 publication-title: Management and Production Engineering Review – volume-title: Orlicky's Material Requirements Planning year: 2011 ident: CIT0031 – ident: CIT0039 doi: 10.1111/j.1475-3995.2011.00808.x – ident: CIT0041 doi: 10.1080/00207543.2020.1849847 – ident: CIT0013 doi: 10.2139/ssrn.3305114 – ident: CIT0022 doi: 10.1016/j.ijpe.2016.02.016 – ident: CIT0033 doi: 10.1080/13675567.2015.1059411 – ident: CIT0026 – ident: CIT0035 doi: 10.1088/1757-899X/337/1/012055 – ident: CIT0043 doi: 10.1016/j.cie.2014.03.006 – ident: CIT0006 doi: 10.1016/j.bushor.2014.01.001 – ident: CIT0008 doi: 10.1109/4235.996017 – ident: CIT0002 doi: 10.1021/ie101645h – ident: CIT0005 – ident: CIT0044 doi: 10.1007/978-3-319-17527-0_14 – ident: CIT0001 doi: 10.1007/978-3-030-85906-0_51 – ident: CIT0004 doi: 10.1080/12507970.2018.1547130 – ident: CIT0038 doi: 10.1260/1748-3018.9.1.41 |
SSID | ssj0000584 |
Score | 2.4770362 |
Snippet | Demand-Driven Material Requirements Planning (DDMRP) is a recent inventory management method that has generated considerable interest in both academia and... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5134 |
SubjectTerms | DDMRP Genetic algorithms Inventory Inventory management lot sizing Material requirements planning metaheuristic multi-objective Multiple objective analysis NSGA-II on-hand inventory Optimization OTD Parameter identification Parameterization |
Title | Parameterisation of demand-driven material requirements planning: a multi-objective genetic algorithm |
URI | https://www.tandfonline.com/doi/abs/10.1080/00207543.2022.2098074 https://www.proquest.com/docview/2827824828 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKdoED4lMMBvKBW-UqseM45jaxTRXaBodUVFyi2HlmQ-uH2uzCH8Lfix07abpODJCqqE3ixPH75fn1-b3fQ-h9mQgNImPEnmBIUsaMKCUiUqaZVBVIrsGt6J5fpONJ8mnKp4PBr17U0k2tRvrnnXkl_yNVu8_K1WXJ_oNku4vaHfa7la_dWgnb7V_J-EvpQqsatuXO8qtgVs4rUq2cGhtae7TpyHAFLuQXfELbMlQq8pnOTUwhWagfXve5osrQ0Lhef1-srurLWd-A3fYg9ngnlp461vUiEAh1jubjchbCJ3sR9I7r8dIq4aao8NAqnfUazMavGgIXz-11-o4JypqwONZBKd-pEdLVQW7zCCIiuCdpGoFXvyxNCc-aYsOdfvZk7S0OeU_b8jg4QiH89Iy_O7NCG0ZJI3e_ke2sS8GTjgdoMw22S_8Xn4vTydlZkZ9M8wdonwrhlv_3j8bH375u5nieBX5v_wxtbphjbb_rNltWzxYn7o4N0Bg2-RP0OPwjwUceXk_RAObP0KMeT-VzBLeBhhcGbwENt0DDfaDhFmgfcIlvwQwHmOEOZi_Q5PQk_zgmoT4H0UzymkiqIqpTpkVqKDcyE8xYE5rxBIyhVaRjEGAPRAyE0IkxTCkVpcCoBml0zF6ivfliDq8QpsyYBKpISJUm9pMxiGMlDauqylgT-QAl7fgVOpDXuxoq10Xccdz6YS_csBdh2A_QqGu29Owt9zWQfeEUdQNi4_FbsHvaHraSLMLrty5oRq0NnmQ0e_3nw2_Qw81LdIj26tUNvLX2bq3eBfD9BtgMqwM |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8QgECY-DurBt_EtB69s2g4txZsxmvW18aCJN1Lo4HvXrPXirxdoq6vGeDDpjQ5tYRi-oTPfELJbcGFQ5MDcDZbxIgamtYhYkeVSlyhTg_6P7nkv617xk-v0eiQXxodVeh_a1kQRwVb7xe0Po9uQOJ_C7XY6Ds69S3wylfSMLuNkMnXY3Ws5RL1Pa5zmDRNzxLxMm8XzWzdf9qcv7KU_rHXYgo7miGlfvo48eei8Vrpj3r7xOv7v6-bJbINQ6X6tUgtkDPuLZGaEt3CJ4EXhY7oCzXOYWTqwtMQn90xWDr39pA4IB92mQ_SxxuEQ8oU-NyWS9mhBQygjG-j72uRSp8k-oZIWjzeD4V11-7RMro4OLw-6rKnXwAzItGIy0VFiMjAis0lqZS7AOkgFKUdrkzIyMQp0DRGgEIZbC1rrKENIDEprYlghE_1BH1cJTcBajmUkpM64u3LAONbSQlmW1kGmNcLbWVKmITP3NTUeVfzBeVqPovKjqJpRXCOdD7Hnms3jLwE5qgKqCscotq55ouAP2c1WX1RjGF6U83AdJuPOz13_R9c7ZKp7eX6mzo57pxtk2jVBCEqETTJRDV9xywGlSm-HlfAOGUUF5A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoSFV7aEtbBIW2PnD1Ksk4cdwbgq54dcUBJG5WbM_0Bbur3XDpr6_tJBRaVRyQcnPGSezxeMb55hvGdhupHKoaRLiBhGxyENaqTDRVra1HXTqMf3S_TKrDC3l8WQ5owmUPq4wxNHVEEclWx8U99zQg4mIGd9joJIToroi5VDoSujxha1VwTyKqD7LJH2Nc1j0RcyaizJDE879u7m1P98hL_zHWaQcav2R2ePcOePJzdNPakfv1F63joz7uFXvR-6d8r1OodbaC09fs-R3WwjcMz5qI6Eokz2le-Yy4x-vwSOEX0Xry4AYnzeYLjEjjdAS55PO-QNIn3vAEZBQz-6MzuDzocUyn5M3V19nie_vt-i27GH8-3z8UfbUG4UCXrdCFzQpXgVMVFSXpWgEFhwpKiUSFz1yOCkNDBqiUk0Rgrc0qhMKhJpfDBludzqa4yXgBRBJ9prStZLhqwDy3msB7T8Fh2mJymCTjeirzWFHjyuS3jKfdKJo4iqYfxS02uhWbd1weDwnouxpg2nSIQl3FEwMPyO4M6mJ6s7A0Ib4NHpkMUe67R3T9kT09Oxib06PJyTZ7FlogIRJhh622ixt8H7yk1n5I6-A31B0EiA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameterisation+of+demand-driven+material+requirements+planning%3A+a+multi-objective+genetic+algorithm&rft.jtitle=International+journal+of+production+research&rft.au=Damand%2C+David&rft.au=Lahrichi%2C+Youssef&rft.au=Barth%2C+Marc&rft.date=2023-08-03&rft.pub=Taylor+%26+Francis+LLC&rft.issn=0020-7543&rft.eissn=1366-588X&rft.volume=61&rft.issue=15&rft.spage=5134&rft.epage=5155&rft_id=info:doi/10.1080%2F00207543.2022.2098074&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7543&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7543&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7543&client=summon |