Parameterisation of demand-driven material requirements planning: a multi-objective genetic algorithm
Demand-Driven Material Requirements Planning (DDMRP) is a recent inventory management method that has generated considerable interest in both academia and industry. Many recent papers have demonstrated the superiority of DDMRP over classical methods like MRP or Kanban, an observation confirmed by co...
Saved in:
Published in | International journal of production research Vol. 61; no. 15; pp. 5134 - 5155 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Taylor & Francis
03.08.2023
Taylor & Francis LLC |
Subjects | |
Online Access | Get full text |
ISSN | 0020-7543 1366-588X |
DOI | 10.1080/00207543.2022.2098074 |
Cover
Summary: | Demand-Driven Material Requirements Planning (DDMRP) is a recent inventory management method that has generated considerable interest in both academia and industry. Many recent papers have demonstrated the superiority of DDMRP over classical methods like MRP or Kanban, an observation confirmed by companies that have implemented DDMRP. However, DDMRP depends on many parameters that affect its performance. Only general rules are given by the authors of the method to fix these parameters but no algorithm. The present paper aims to fill this gap by proposing a multi-objective optimisation algorithm to fix a set of eight identified parameters. The suggested genetic algorithm is coupled with a simulation algorithm that computes the objective functions. Two opposing objective functions are considered: first, the maximisation of orders delivered on-time to the customer and, second, the minimisation of on-hand inventory. A set of data instances was generated to test the suggested method. Fronts of non-dominated solutions are found for all these instances. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0020-7543 1366-588X |
DOI: | 10.1080/00207543.2022.2098074 |