Model-Based Reinforcement Learning for Infinite-Horizon Approximate Optimal Tracking
This brief paper provides an approximate online adaptive solution to the infinite-horizon optimal tracking problem for control-affine continuous-time nonlinear systems with unknown drift dynamics. To relax the persistence of excitation condition, model-based reinforcement learning is implemented usi...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 28; no. 3; pp. 753 - 758 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.03.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This brief paper provides an approximate online adaptive solution to the infinite-horizon optimal tracking problem for control-affine continuous-time nonlinear systems with unknown drift dynamics. To relax the persistence of excitation condition, model-based reinforcement learning is implemented using a concurrent-learning-based system identifier to simulate experience by evaluating the Bellman error over unexplored areas of the state space. Tracking of the desired trajectory and convergence of the developed policy to a neighborhood of the optimal policy are established via Lyapunov-based stability analysis. Simulation results demonstrate the effectiveness of the developed technique. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2162-237X 2162-2388 |
DOI: | 10.1109/TNNLS.2015.2511658 |