Adsorption and desorption characteristics of 3-dimensional networks of fused graphene

Here we explore the exceptional structural characteristics of a set of graphene-related materials prepared by a wet chemical approach. We present a comprehensive study of the effects of morphology, sonication, temperature, probe species, and stacking behaviour on the measurement of graphene surface...

Full description

Saved in:
Bibliographic Details
Published inSurface science Vol. 606; no. 1; pp. 34 - 39
Main Authors Choucair, Mohammad, Tse, Nicholas M.K., Hill, Matthew R., Stride, John A.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Here we explore the exceptional structural characteristics of a set of graphene-related materials prepared by a wet chemical approach. We present a comprehensive study of the effects of morphology, sonication, temperature, probe species, and stacking behaviour on the measurement of graphene surface area. Nitrogen gas was used in the solid state gas adsorption measurements and methylene blue dye for adsorption measurements on aqueous dispersions of graphene. The surface area values obtained are among the highest reported for synthetic graphenes: 1700 m 2 g − 1 in aqueous dispersions and 612 m 2 g − 1 in the solid state. Microscopy revealed the graphene used in the study was present in large part as free sheets and electron diffraction confirmed the successful synthesis of high quality graphene with a regular C–C bond length of 1.41 ± 0.02 Å. ► Surface area measurements of graphene in the solid state and as aqueous dispersions. ► Surface area of graphene is tuneable based on post-synthesis preparation. ► Nitrogen adsorption was affected by the consolidation of the graphene layers. ► Kinetic effects influenced the outcome of methylene blue dye adsorption.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0039-6028
1879-2758
DOI:10.1016/j.susc.2011.08.016