Saliency-Aware Video Object Segmentation
Video saliency, aiming for estimation of a single dominant object in a sequence, offers strong object-level cues for unsupervised video object segmentation. In this paper, we present a geodesic distance based technique that provides reliable and temporally consistent saliency measurement of superpix...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 40; no. 1; pp. 20 - 33 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Video saliency, aiming for estimation of a single dominant object in a sequence, offers strong object-level cues for unsupervised video object segmentation. In this paper, we present a geodesic distance based technique that provides reliable and temporally consistent saliency measurement of superpixels as a prior for pixel-wise labeling. Using undirected intra-frame and inter-frame graphs constructed from spatiotemporal edges or appearance and motion, and a skeleton abstraction step to further enhance saliency estimates, our method formulates the pixel-wise segmentation task as an energy minimization problem on a function that consists of unary terms of global foreground and background models, dynamic location models, and pairwise terms of label smoothness potentials. We perform extensive quantitative and qualitative experiments on benchmark datasets. Our method achieves superior performance in comparison to the current state-of-the-art in terms of accuracy and speed. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0162-8828 1939-3539 2160-9292 |
DOI: | 10.1109/TPAMI.2017.2662005 |