Saliency-Aware Video Object Segmentation

Video saliency, aiming for estimation of a single dominant object in a sequence, offers strong object-level cues for unsupervised video object segmentation. In this paper, we present a geodesic distance based technique that provides reliable and temporally consistent saliency measurement of superpix...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 40; no. 1; pp. 20 - 33
Main Authors Wenguan Wang, Jianbing Shen, Ruigang Yang, Porikli, Fatih
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Video saliency, aiming for estimation of a single dominant object in a sequence, offers strong object-level cues for unsupervised video object segmentation. In this paper, we present a geodesic distance based technique that provides reliable and temporally consistent saliency measurement of superpixels as a prior for pixel-wise labeling. Using undirected intra-frame and inter-frame graphs constructed from spatiotemporal edges or appearance and motion, and a skeleton abstraction step to further enhance saliency estimates, our method formulates the pixel-wise segmentation task as an energy minimization problem on a function that consists of unary terms of global foreground and background models, dynamic location models, and pairwise terms of label smoothness potentials. We perform extensive quantitative and qualitative experiments on benchmark datasets. Our method achieves superior performance in comparison to the current state-of-the-art in terms of accuracy and speed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2017.2662005