Gas Recognition in E-Nose System: A Review
Gas recognition is essential in an electronic nose (E-nose) system, which is responsible for recognizing multivariate responses obtained by gas sensors in various applications. Over the past decades, classical gas recognition approaches such as principal component analysis (PCA) have been widely app...
Saved in:
Published in | IEEE transactions on biomedical circuits and systems Vol. 16; no. 2; pp. 169 - 184 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Gas recognition is essential in an electronic nose (E-nose) system, which is responsible for recognizing multivariate responses obtained by gas sensors in various applications. Over the past decades, classical gas recognition approaches such as principal component analysis (PCA) have been widely applied in E-nose systems. In recent years, artificial neural network (ANN) has revolutionized the field of E-nose, especially spiking neural network (SNN). In this paper, we investigate recent gas recognition methods for E-nose, and compare and analyze them in terms of algorithms and hardware implementations. We find each classical gas recognition method has a relatively fixed framework and a few parameters, which makes it easy to be designed and perform well with limited gas samples, but weak in multi-gas recognition under noise. While ANN-based methods obtain better recognition accuracy with flexible architectures and lots of parameters. However, some ANNs are too complex to be implemented in portable E-nose systems, such as deep convolutional neural networks (CNNs). In contrast, SNN-based gas recognition methods achieve satisfying accuracy and recognize more types of gases, and could be implemented with energy-efficient hardware, which makes them a promising candidate in multi-gas identification. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ISSN: | 1932-4545 1940-9990 1940-9990 |
DOI: | 10.1109/TBCAS.2022.3166530 |