Differential regulation of glycogen synthase by insulin and glucose in vivo in skeletal muscles of the rat

Glucose 6-phosphate (G-6-P)-independent glycogen synthase (GSa) and glycogen synthase (GS) total activities were measured in muscles from 24-h-starved rats. Intravenous glucose tolerance tests (0.5 g/kg body wt) were used to produce physiological, transient increases in insulin and glucose concentra...

Full description

Saved in:
Bibliographic Details
Published inThe American journal of physiology Vol. 273; no. 3; p. E479
Main Authors Sugden, M.C, Holness, M.J, Fryer, L.G.D
Format Journal Article
LanguageEnglish
Published United States 01.09.1997
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Glucose 6-phosphate (G-6-P)-independent glycogen synthase (GSa) and glycogen synthase (GS) total activities were measured in muscles from 24-h-starved rats. Intravenous glucose tolerance tests (0.5 g/kg body wt) were used to produce physiological, transient increases in insulin and glucose concentrations. GS activation occurred at approximately 10 min after glucose administration with peak activation at approximately 15 min. GS activation was reversed approximately 15 min after insulin and glucose concentrations had returned to basal. No differences existed between fast- and slow-twitch muscles. Hyperinsulinemia (approximately 160 mU/ml) in the absence of hyperglycemia elicited 1.5-fold activation of GS (P < 0.001) in two of three fast-twitch muscles but did not activate GS in slow-twitch muscles. Glucose infusion (glycemia approximately 8 mM; insulin approximately 40 mU/ml) significantly (P < 0.01) increased the percentage of total GS in the GSa form in four of the five muscles. Hyperglycemia with modest hyperinsulinemia evoked greater enhancement of GSa activity in fast-twitch muscle than insulin alone at a higher concentration (P < 0.01). In summary, hyperinsulinemia without hyperglycemia does not result in maximal activation of GS in fast-twitch muscle, and a rise in glycemia is obligatory for GS activation by insulin in slow-twitch muscle. The data support an important role for glycemia in modulating the response of skeletal muscle GS to insulin and provide further evidence of heterogeneity among skeletal muscle types.
Bibliography:S30
1997061811
ISSN:0002-9513
2163-5773
DOI:10.1152/ajpendo.1997.273.3.e479