An fNIRS-Based Motor Imagery BCI for ALS: A Subject-Specific Data-Driven Approach
Objective: Functional near-infrared spectroscopy (fNIRS) has recently gained momentum in research on motor-imagery (MI)-based brain-computer interfaces (BCIs). However, strikingly, most of the research effort is primarily devoted to enhancing fNIRS-based BCIs for healthy individuals. The ability of...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 12; pp. 3063 - 3073 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Objective: Functional near-infrared spectroscopy (fNIRS) has recently gained momentum in research on motor-imagery (MI)-based brain-computer interfaces (BCIs). However, strikingly, most of the research effort is primarily devoted to enhancing fNIRS-based BCIs for healthy individuals. The ability of patients with amyotrophic lateral sclerosis (ALS), among the main BCI end-users to utilize fNIRS-based hemodynamic responses to efficiently control an MI-based BCI, has not yet been explored. This study aims to quantify subject-specific spatio-temporal characteristics of ALS patients' hemodynamic responses to MI tasks, and to investigate the feasibility of using these responses as a means of communication to control a binary BCI. Methods: Hemodynamic responses were recorded using fNIRS from eight patients with ALS while performing MI-Rest tasks. The generalized linear model (GLM) analysis was conducted to statistically estimate and evaluate individualized spatial activation. Selected channel sets were statistically optimized for classification. Subject-specific discriminative features, including a proposed data-driven estimated coefficient obtained from GLM, and optimized classification parameters were identified and used to further evaluate the performance using a linear support vector machine (SVM) classifier. Results: Inter-subject variations were observed in spatio-temporal characteristics of patients' hemodynamic responses. Using optimized classification parameters and feature sets, all subjects could successfully use their MI hemodynamic responses to control a BCI with an average classification accuracy of 85.4% ± 9.8%. Significance: Our results indicate a promising application of fNIRS-based MI hemodynamic responses to control a binary BCI by ALS patients. These findings highlight the importance of subject-specific data-driven approaches for identifying discriminative spatio-temporal characteristics for an optimized BCI performance. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1534-4320 1558-0210 1558-0210 |
DOI: | 10.1109/TNSRE.2020.3038717 |