Uncovering individual differences in fine-scale dynamics of functional connectivity

Abstract Functional connectivity (FC) profiles contain subject-specific features that are conserved across time and have potential to capture brain–behavior relationships. Most prior work has focused on spatial features (nodes and systems) of these FC fingerprints, computed over entire imaging sessi...

Full description

Saved in:
Bibliographic Details
Published inCerebral cortex (New York, N.Y. 1991) Vol. 33; no. 5; pp. 2375 - 2394
Main Authors Cutts, Sarah A, Faskowitz, Joshua, Betzel, Richard F, Sporns, Olaf
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 20.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Functional connectivity (FC) profiles contain subject-specific features that are conserved across time and have potential to capture brain–behavior relationships. Most prior work has focused on spatial features (nodes and systems) of these FC fingerprints, computed over entire imaging sessions. We propose a method for temporally filtering FC, which allows selecting specific moments in time while also maintaining the spatial pattern of node-based activity. To this end, we leverage a recently proposed decomposition of FC into edge time series (eTS). We systematically analyze functional magnetic resonance imaging frames to define features that enhance identifiability across multiple fingerprinting metrics, similarity metrics, and data sets. Results show that these metrics characteristically vary with eTS cofluctuation amplitude, similarity of frames within a run, transition velocity, and expression of functional systems. We further show that data-driven optimization of features that maximize fingerprinting metrics isolates multiple spatial patterns of system expression at specific moments in time. Selecting just 10% of the data can yield stronger fingerprints than are obtained from the full data set. Our findings support the idea that FC fingerprints are differentially expressed across time and suggest that multiple distinct fingerprints can be identified when spatial and temporal characteristics are considered simultaneously.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1047-3211
1460-2199
1460-2199
DOI:10.1093/cercor/bhac214