Reduced-Dimension Linear Transform Coding of Distributed Correlated Signals With Incomplete Observations

We study the problem of optimal reduced-dimension linear transform coding and reconstruction of a signal based on distributed correlated observations of the signal. In the mean square estimation context this involves finding the optimal signal representation based on multiple incomplete or only part...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 55; no. 6; pp. 2848 - 2858
Main Authors Nurdin, H.I., Mazumdar, R.R., Bagchi, A.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.06.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study the problem of optimal reduced-dimension linear transform coding and reconstruction of a signal based on distributed correlated observations of the signal. In the mean square estimation context this involves finding the optimal signal representation based on multiple incomplete or only partial observations that are correlated. In particular, this leads to the study of finding the optimal Karhunen-Loeve basis based on the censored observations. The problem has been considered previously by Gastpar, Dragotti, and Vetterli in the context of jointly Gaussian random variables based on using conditional covariances. In this paper, we derive the estimation results in the more general setting of second-order random variables with arbitrary distributions, using entirely different techniques based on the idea of innovations. We explicitly solve the single transform coder case, give a characterization of optimality in the multiple distributed transform coders scenario and provide additional insights into the structure of the problem.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2009.2018349