Robust Real-Time Embedded EMG Recognition Framework Using Temporal Convolutional Networks on a Multicore IoT Processor
Hand movement classification via surface electromyographic (sEMG) signal is a well-established approach for advanced Human-Computer Interaction. However, sEMG movement recognition has to deal with the long-term reliability of sEMG-based control, limited by the variability affecting the sEMG signal....
Saved in:
Published in | IEEE transactions on biomedical circuits and systems Vol. 14; no. 2; pp. 244 - 256 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Hand movement classification via surface electromyographic (sEMG) signal is a well-established approach for advanced Human-Computer Interaction. However, sEMG movement recognition has to deal with the long-term reliability of sEMG-based control, limited by the variability affecting the sEMG signal. Embedded solutions are affected by a recognition accuracy drop over time that makes them unsuitable for reliable gesture controller design. In this paper, we present a complete wearable-class embedded system for robust sEMG-based gesture recognition, based on Temporal Convolutional Networks (TCNs). Firstly, we developed a novel TCN topology (TEMPONet), and we tested our solution on a benchmark dataset (Ninapro), achieving 49.6% average accuracy, 7.8%, better than current State-Of-the-Art (SoA). Moreover, we designed an energy-efficient embedded platform based on GAP8, a novel 8-core IoT processor. Using our embedded platform, we collected a second 20-sessions dataset to validate the system on a setup which is representative of the final deployment. We obtain 93.7% average accuracy with the TCN, comparable with a SoA SVM approach (91.1%). Finally, we profiled the performance of the network implemented on GAP8 by using an 8-bit quantization strategy to fit the memory constraint of the processor. We reach a <inline-formula><tex-math notation="LaTeX">\mathbf {4\times }</tex-math></inline-formula> lower memory footprint (460 kB) with a performance degradation of only 3% accuracy. We detailed the execution on the GAP8 platform, showing that the quantized network executes a single classification in 12.84 ms with a power envelope of 0.9 mJ, making it suitable for a long-lifetime wearable deployment. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1932-4545 1940-9990 1940-9990 |
DOI: | 10.1109/TBCAS.2019.2959160 |