The pepsin residue glycine-76 contributes to active-site loop flexibility and participates in catalysis

Glycine residues are known to contribute to conformational flexibility of polypeptide chains, and have been found to contribute to flexibility of some loops associated with enzymic catalysis. A comparison of porcine pepsin in zymogen, mature and inhibited forms revealed that a loop (a flap), consist...

Full description

Saved in:
Bibliographic Details
Published inBiochemical journal Vol. 349; no. Pt 1; pp. 169 - 177
Main Authors Okoniewska, M, Tanaka, T, Yada, R Y
Format Journal Article
LanguageEnglish
Published England 01.07.2000
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Glycine residues are known to contribute to conformational flexibility of polypeptide chains, and have been found to contribute to flexibility of some loops associated with enzymic catalysis. A comparison of porcine pepsin in zymogen, mature and inhibited forms revealed that a loop (a flap), consisting of residues 71--80, located near the active site changed its position upon substrate binding. The loop residue, glycine-76, has been implicated in the catalytic process and thought to participate in a hydrogen-bond network aligning the substrate. This study investigated the role of glycine-76 using site-directed mutagenesis. Three mutants, G76A, G76V and G76S, were constructed to increase conformational restriction of a polypeptide chain. In addition, the serine mutant introduced a hydrogen-bonding potential at position 76 similar to that observed in human renin. All the mutants, regardless of amino acid size and polarity, had lower catalytic efficiency and activated more slowly than the wild-type enzyme. The slower activation process was associated directly with altered proteolytic activity. Consequently, it was proposed that a proteolytic cleavage represents a limiting step of the activation process. Lower catalytic efficiency of the mutants was explained as a decrease in the flap flexibility and, therefore, a different pattern of hydrogen bonds responsible for substrate alignment and flap conformation. The results demonstrated that flap flexibility is essential for efficient catalytic and activation processes.
ISSN:0264-6021
1470-8728
DOI:10.1042/0264-6021:3490169