Exploring the Effects of Shoreline Development on Fringing Salt Marshes Using Nekton, Benthic Invertebrate, and Vegetation Metrics

Fringing marshes are important but often overlooked components of estuarine systems. Due to their relatively small size and large edge to area ratio, they are particularly vulnerable to impacts from adjacent upland development. Because current shoreland zoning policies aim to limit activities in upl...

Full description

Saved in:
Bibliographic Details
Published inEstuaries and coasts Vol. 38; no. 4; pp. 1274 - 1287
Main Authors Morgan, Pamela A, Dionne, Michele, MacKenzie, Richard, Miller, Jeremy
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2015
Springer Science+Business Media
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fringing marshes are important but often overlooked components of estuarine systems. Due to their relatively small size and large edge to area ratio, they are particularly vulnerable to impacts from adjacent upland development. Because current shoreland zoning policies aim to limit activities in upland buffer zones directly next to coastal habitats, we tested for relationships between the extent of development in a 100-m buffer adjacent to fringing salt marshes and the structure of marsh plants, benthic invertebrates, and nekton communities. We also wanted to determine useful metrics for monitoring fringing marshes that are exposed to shoreline development. We sampled 18 fringing salt marshes in two estuaries along the coast of southern Maine. The percent of shoreline developed in 100-m buffers around each site ranged from 0 to 91 %. Several variables correlated with the percent of shoreline developed, including one plant diversity metric (Evenness), two nekton metrics (Fundulus heteroclitus %biomass and Carcinus maenas %biomass), and several benthic invertebrate metrics (nematode and insect/dipteran larvae densities in the high marsh zone) (p < 0.05). Carcinus maenas, a recent invader to the area, comprised 30–97 % of the nekton biomass collected at the 18 sites and was inversely correlated with Fundulus %biomass. None of these biotic metrics correlated with the other abiotic marsh attributes we measured, including porewater salinity, marsh site width, and distance of the site to the mouth of the river. In all, between 25 and 48 % of the variance in the individual metrics we identified was accounted for by the extent of development in the 100-m buffer zone. Results from this study add to our understanding of fringing salt marshes and the impacts of shoreline development to these habitats and point to metrics that may be useful in monitoring these impacts.
Bibliography:http://dx.doi.org/10.1007/s12237-015-9947-1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1559-2723
1559-2731
DOI:10.1007/s12237-015-9947-1